A study of the heat transfer in materials with interval and fuzzy values via extension principle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s40314-022-02055-2 http://hdl.handle.net/11449/246070 |
Resumo: | This paper presents a study of the heat transfer in objects, considering uncertain parameters such as the thermal diffusion coefficient and the initial condition. The uncertainty is modeled by intervals and fuzzy values. The fuzzy solutions to the problem are obtained from the Zadeh’s extension principle. This work presents the characterization of the interval and fuzzy solutions by means of α-cuts, as well as associations between the propagation of uncertainty and the physical properties of materials. A comparison between the classical solution and the solutions obtained by defuzzification methods is also presented. To illustrate the results, some examples are provided, considering different materials. |
id |
UNSP_dc1427ae294da7122703f15f58fa40aa |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/246070 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A study of the heat transfer in materials with interval and fuzzy values via extension principleFuzzy differential equationsHeat equationZadeh extension principleThis paper presents a study of the heat transfer in objects, considering uncertain parameters such as the thermal diffusion coefficient and the initial condition. The uncertainty is modeled by intervals and fuzzy values. The fuzzy solutions to the problem are obtained from the Zadeh’s extension principle. This work presents the characterization of the interval and fuzzy solutions by means of α-cuts, as well as associations between the propagation of uncertainty and the physical properties of materials. A comparison between the classical solution and the solutions obtained by defuzzification methods is also presented. To illustrate the results, some examples are provided, considering different materials.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University, São PauloIlum School of Science Brazilian Center for Research in Energy and Materials, São PauloDepartment of Mathematics São Paulo State University, São PauloSão Paulo State University, São PauloDepartment of Mathematics São Paulo State University, São PauloFAPESP: 2021/03896-1Universidade Estadual Paulista (UNESP)Brazilian Center for Research in Energy and MaterialsDelgato, Yngrid Zacharias [UNESP]Wasques, Vinícius Francisco [UNESP]2023-07-29T12:30:55Z2023-07-29T12:30:55Z2022-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40314-022-02055-2Computational and Applied Mathematics, v. 41, n. 8, 2022.1807-03022238-3603http://hdl.handle.net/11449/24607010.1007/s40314-022-02055-22-s2.0-85139830476Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational and Applied Mathematicsinfo:eu-repo/semantics/openAccess2023-07-29T12:30:56Zoai:repositorio.unesp.br:11449/246070Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:25:07.438035Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A study of the heat transfer in materials with interval and fuzzy values via extension principle |
title |
A study of the heat transfer in materials with interval and fuzzy values via extension principle |
spellingShingle |
A study of the heat transfer in materials with interval and fuzzy values via extension principle Delgato, Yngrid Zacharias [UNESP] Fuzzy differential equations Heat equation Zadeh extension principle |
title_short |
A study of the heat transfer in materials with interval and fuzzy values via extension principle |
title_full |
A study of the heat transfer in materials with interval and fuzzy values via extension principle |
title_fullStr |
A study of the heat transfer in materials with interval and fuzzy values via extension principle |
title_full_unstemmed |
A study of the heat transfer in materials with interval and fuzzy values via extension principle |
title_sort |
A study of the heat transfer in materials with interval and fuzzy values via extension principle |
author |
Delgato, Yngrid Zacharias [UNESP] |
author_facet |
Delgato, Yngrid Zacharias [UNESP] Wasques, Vinícius Francisco [UNESP] |
author_role |
author |
author2 |
Wasques, Vinícius Francisco [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Brazilian Center for Research in Energy and Materials |
dc.contributor.author.fl_str_mv |
Delgato, Yngrid Zacharias [UNESP] Wasques, Vinícius Francisco [UNESP] |
dc.subject.por.fl_str_mv |
Fuzzy differential equations Heat equation Zadeh extension principle |
topic |
Fuzzy differential equations Heat equation Zadeh extension principle |
description |
This paper presents a study of the heat transfer in objects, considering uncertain parameters such as the thermal diffusion coefficient and the initial condition. The uncertainty is modeled by intervals and fuzzy values. The fuzzy solutions to the problem are obtained from the Zadeh’s extension principle. This work presents the characterization of the interval and fuzzy solutions by means of α-cuts, as well as associations between the propagation of uncertainty and the physical properties of materials. A comparison between the classical solution and the solutions obtained by defuzzification methods is also presented. To illustrate the results, some examples are provided, considering different materials. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-01 2023-07-29T12:30:55Z 2023-07-29T12:30:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40314-022-02055-2 Computational and Applied Mathematics, v. 41, n. 8, 2022. 1807-0302 2238-3603 http://hdl.handle.net/11449/246070 10.1007/s40314-022-02055-2 2-s2.0-85139830476 |
url |
http://dx.doi.org/10.1007/s40314-022-02055-2 http://hdl.handle.net/11449/246070 |
identifier_str_mv |
Computational and Applied Mathematics, v. 41, n. 8, 2022. 1807-0302 2238-3603 10.1007/s40314-022-02055-2 2-s2.0-85139830476 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computational and Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128647337345024 |