A study of the heat transfer in materials with interval and fuzzy values via extension principle

Detalhes bibliográficos
Autor(a) principal: Delgato, Yngrid Zacharias [UNESP]
Data de Publicação: 2022
Outros Autores: Wasques, Vinícius Francisco [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s40314-022-02055-2
http://hdl.handle.net/11449/246070
Resumo: This paper presents a study of the heat transfer in objects, considering uncertain parameters such as the thermal diffusion coefficient and the initial condition. The uncertainty is modeled by intervals and fuzzy values. The fuzzy solutions to the problem are obtained from the Zadeh’s extension principle. This work presents the characterization of the interval and fuzzy solutions by means of α-cuts, as well as associations between the propagation of uncertainty and the physical properties of materials. A comparison between the classical solution and the solutions obtained by defuzzification methods is also presented. To illustrate the results, some examples are provided, considering different materials.
id UNSP_dc1427ae294da7122703f15f58fa40aa
oai_identifier_str oai:repositorio.unesp.br:11449/246070
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A study of the heat transfer in materials with interval and fuzzy values via extension principleFuzzy differential equationsHeat equationZadeh extension principleThis paper presents a study of the heat transfer in objects, considering uncertain parameters such as the thermal diffusion coefficient and the initial condition. The uncertainty is modeled by intervals and fuzzy values. The fuzzy solutions to the problem are obtained from the Zadeh’s extension principle. This work presents the characterization of the interval and fuzzy solutions by means of α-cuts, as well as associations between the propagation of uncertainty and the physical properties of materials. A comparison between the classical solution and the solutions obtained by defuzzification methods is also presented. To illustrate the results, some examples are provided, considering different materials.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University, São PauloIlum School of Science Brazilian Center for Research in Energy and Materials, São PauloDepartment of Mathematics São Paulo State University, São PauloSão Paulo State University, São PauloDepartment of Mathematics São Paulo State University, São PauloFAPESP: 2021/03896-1Universidade Estadual Paulista (UNESP)Brazilian Center for Research in Energy and MaterialsDelgato, Yngrid Zacharias [UNESP]Wasques, Vinícius Francisco [UNESP]2023-07-29T12:30:55Z2023-07-29T12:30:55Z2022-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s40314-022-02055-2Computational and Applied Mathematics, v. 41, n. 8, 2022.1807-03022238-3603http://hdl.handle.net/11449/24607010.1007/s40314-022-02055-22-s2.0-85139830476Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational and Applied Mathematicsinfo:eu-repo/semantics/openAccess2023-07-29T12:30:56Zoai:repositorio.unesp.br:11449/246070Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:25:07.438035Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A study of the heat transfer in materials with interval and fuzzy values via extension principle
title A study of the heat transfer in materials with interval and fuzzy values via extension principle
spellingShingle A study of the heat transfer in materials with interval and fuzzy values via extension principle
Delgato, Yngrid Zacharias [UNESP]
Fuzzy differential equations
Heat equation
Zadeh extension principle
title_short A study of the heat transfer in materials with interval and fuzzy values via extension principle
title_full A study of the heat transfer in materials with interval and fuzzy values via extension principle
title_fullStr A study of the heat transfer in materials with interval and fuzzy values via extension principle
title_full_unstemmed A study of the heat transfer in materials with interval and fuzzy values via extension principle
title_sort A study of the heat transfer in materials with interval and fuzzy values via extension principle
author Delgato, Yngrid Zacharias [UNESP]
author_facet Delgato, Yngrid Zacharias [UNESP]
Wasques, Vinícius Francisco [UNESP]
author_role author
author2 Wasques, Vinícius Francisco [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Brazilian Center for Research in Energy and Materials
dc.contributor.author.fl_str_mv Delgato, Yngrid Zacharias [UNESP]
Wasques, Vinícius Francisco [UNESP]
dc.subject.por.fl_str_mv Fuzzy differential equations
Heat equation
Zadeh extension principle
topic Fuzzy differential equations
Heat equation
Zadeh extension principle
description This paper presents a study of the heat transfer in objects, considering uncertain parameters such as the thermal diffusion coefficient and the initial condition. The uncertainty is modeled by intervals and fuzzy values. The fuzzy solutions to the problem are obtained from the Zadeh’s extension principle. This work presents the characterization of the interval and fuzzy solutions by means of α-cuts, as well as associations between the propagation of uncertainty and the physical properties of materials. A comparison between the classical solution and the solutions obtained by defuzzification methods is also presented. To illustrate the results, some examples are provided, considering different materials.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-01
2023-07-29T12:30:55Z
2023-07-29T12:30:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40314-022-02055-2
Computational and Applied Mathematics, v. 41, n. 8, 2022.
1807-0302
2238-3603
http://hdl.handle.net/11449/246070
10.1007/s40314-022-02055-2
2-s2.0-85139830476
url http://dx.doi.org/10.1007/s40314-022-02055-2
http://hdl.handle.net/11449/246070
identifier_str_mv Computational and Applied Mathematics, v. 41, n. 8, 2022.
1807-0302
2238-3603
10.1007/s40314-022-02055-2
2-s2.0-85139830476
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computational and Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128647337345024