Building roof contour extraction from LiDAR data

Detalhes bibliográficos
Autor(a) principal: Dal Poz, Aluir P. [UNESP]
Data de Publicação: 2011
Outros Autores: Galvanin, Edinéia A.S.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://www.asprs.org/a/publications/proceedings/Milwaukee2011/files/Dal_Poz.pdf
http://hdl.handle.net/11449/72970
Resumo: This paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the proposed methodology works properly.
id UNSP_dd58d9c35a31185a487d7e099c94b282
oai_identifier_str oai:repositorio.unesp.br:11449/72970
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Building roof contour extraction from LiDAR dataBuilding roof contoursDSMMarkov random fieldSimulated annealingAutomatic extractionBuilding roofContour ExtractionDigital surface modelsEnergy functionsLIDAR dataMarkov Random FieldsPolygonizationRegion-mergingSpatial constraintsSplitting techniquesVectorizationOptical radarPhotogrammetryRemote sensingRoofsBuildingsThis paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the proposed methodology works properly.Dept. of Cartography College of Sciences and Technology São Paulo State University, R. Roberto Simonsen 305, 19060-900 Presidente Prudente, SPDept. of Mathematics Mato Grosso State University, R. A, s/n, 78390-000, Barra do Bugres, MTDept. of Cartography College of Sciences and Technology São Paulo State University, R. Roberto Simonsen 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista (Unesp)Mato Grosso State UniversityDal Poz, Aluir P. [UNESP]Galvanin, Edinéia A.S.2014-05-27T11:26:17Z2014-05-27T11:26:17Z2011-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject88-92http://www.asprs.org/a/publications/proceedings/Milwaukee2011/files/Dal_Poz.pdfAmerican Society for Photogrammetry and Remote Sensing Annual Conference 2011, p. 88-92.http://hdl.handle.net/11449/729702-s2.0-8486861397750418812042757680000-0002-6678-9599Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAmerican Society for Photogrammetry and Remote Sensing Annual Conference 2011info:eu-repo/semantics/openAccess2024-06-18T15:02:47Zoai:repositorio.unesp.br:11449/72970Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:42:25.272814Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Building roof contour extraction from LiDAR data
title Building roof contour extraction from LiDAR data
spellingShingle Building roof contour extraction from LiDAR data
Dal Poz, Aluir P. [UNESP]
Building roof contours
DSM
Markov random field
Simulated annealing
Automatic extraction
Building roof
Contour Extraction
Digital surface models
Energy functions
LIDAR data
Markov Random Fields
Polygonization
Region-merging
Spatial constraints
Splitting techniques
Vectorization
Optical radar
Photogrammetry
Remote sensing
Roofs
Buildings
title_short Building roof contour extraction from LiDAR data
title_full Building roof contour extraction from LiDAR data
title_fullStr Building roof contour extraction from LiDAR data
title_full_unstemmed Building roof contour extraction from LiDAR data
title_sort Building roof contour extraction from LiDAR data
author Dal Poz, Aluir P. [UNESP]
author_facet Dal Poz, Aluir P. [UNESP]
Galvanin, Edinéia A.S.
author_role author
author2 Galvanin, Edinéia A.S.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Mato Grosso State University
dc.contributor.author.fl_str_mv Dal Poz, Aluir P. [UNESP]
Galvanin, Edinéia A.S.
dc.subject.por.fl_str_mv Building roof contours
DSM
Markov random field
Simulated annealing
Automatic extraction
Building roof
Contour Extraction
Digital surface models
Energy functions
LIDAR data
Markov Random Fields
Polygonization
Region-merging
Spatial constraints
Splitting techniques
Vectorization
Optical radar
Photogrammetry
Remote sensing
Roofs
Buildings
topic Building roof contours
DSM
Markov random field
Simulated annealing
Automatic extraction
Building roof
Contour Extraction
Digital surface models
Energy functions
LIDAR data
Markov Random Fields
Polygonization
Region-merging
Spatial constraints
Splitting techniques
Vectorization
Optical radar
Photogrammetry
Remote sensing
Roofs
Buildings
description This paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the proposed methodology works properly.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-01
2014-05-27T11:26:17Z
2014-05-27T11:26:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.asprs.org/a/publications/proceedings/Milwaukee2011/files/Dal_Poz.pdf
American Society for Photogrammetry and Remote Sensing Annual Conference 2011, p. 88-92.
http://hdl.handle.net/11449/72970
2-s2.0-84868613977
5041881204275768
0000-0002-6678-9599
url http://www.asprs.org/a/publications/proceedings/Milwaukee2011/files/Dal_Poz.pdf
http://hdl.handle.net/11449/72970
identifier_str_mv American Society for Photogrammetry and Remote Sensing Annual Conference 2011, p. 88-92.
2-s2.0-84868613977
5041881204275768
0000-0002-6678-9599
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv American Society for Photogrammetry and Remote Sensing Annual Conference 2011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 88-92
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128240873635840