Building roof contour extraction from LiDAR data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://www.asprs.org/a/publications/proceedings/Milwaukee2011/files/Dal_Poz.pdf http://hdl.handle.net/11449/72970 |
Resumo: | This paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the proposed methodology works properly. |
id |
UNSP_dd58d9c35a31185a487d7e099c94b282 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72970 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Building roof contour extraction from LiDAR dataBuilding roof contoursDSMMarkov random fieldSimulated annealingAutomatic extractionBuilding roofContour ExtractionDigital surface modelsEnergy functionsLIDAR dataMarkov Random FieldsPolygonizationRegion-mergingSpatial constraintsSplitting techniquesVectorizationOptical radarPhotogrammetryRemote sensingRoofsBuildingsThis paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the proposed methodology works properly.Dept. of Cartography College of Sciences and Technology São Paulo State University, R. Roberto Simonsen 305, 19060-900 Presidente Prudente, SPDept. of Mathematics Mato Grosso State University, R. A, s/n, 78390-000, Barra do Bugres, MTDept. of Cartography College of Sciences and Technology São Paulo State University, R. Roberto Simonsen 305, 19060-900 Presidente Prudente, SPUniversidade Estadual Paulista (Unesp)Mato Grosso State UniversityDal Poz, Aluir P. [UNESP]Galvanin, Edinéia A.S.2014-05-27T11:26:17Z2014-05-27T11:26:17Z2011-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject88-92http://www.asprs.org/a/publications/proceedings/Milwaukee2011/files/Dal_Poz.pdfAmerican Society for Photogrammetry and Remote Sensing Annual Conference 2011, p. 88-92.http://hdl.handle.net/11449/729702-s2.0-8486861397750418812042757680000-0002-6678-9599Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAmerican Society for Photogrammetry and Remote Sensing Annual Conference 2011info:eu-repo/semantics/openAccess2024-06-18T15:02:47Zoai:repositorio.unesp.br:11449/72970Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:42:25.272814Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Building roof contour extraction from LiDAR data |
title |
Building roof contour extraction from LiDAR data |
spellingShingle |
Building roof contour extraction from LiDAR data Dal Poz, Aluir P. [UNESP] Building roof contours DSM Markov random field Simulated annealing Automatic extraction Building roof Contour Extraction Digital surface models Energy functions LIDAR data Markov Random Fields Polygonization Region-merging Spatial constraints Splitting techniques Vectorization Optical radar Photogrammetry Remote sensing Roofs Buildings |
title_short |
Building roof contour extraction from LiDAR data |
title_full |
Building roof contour extraction from LiDAR data |
title_fullStr |
Building roof contour extraction from LiDAR data |
title_full_unstemmed |
Building roof contour extraction from LiDAR data |
title_sort |
Building roof contour extraction from LiDAR data |
author |
Dal Poz, Aluir P. [UNESP] |
author_facet |
Dal Poz, Aluir P. [UNESP] Galvanin, Edinéia A.S. |
author_role |
author |
author2 |
Galvanin, Edinéia A.S. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Mato Grosso State University |
dc.contributor.author.fl_str_mv |
Dal Poz, Aluir P. [UNESP] Galvanin, Edinéia A.S. |
dc.subject.por.fl_str_mv |
Building roof contours DSM Markov random field Simulated annealing Automatic extraction Building roof Contour Extraction Digital surface models Energy functions LIDAR data Markov Random Fields Polygonization Region-merging Spatial constraints Splitting techniques Vectorization Optical radar Photogrammetry Remote sensing Roofs Buildings |
topic |
Building roof contours DSM Markov random field Simulated annealing Automatic extraction Building roof Contour Extraction Digital surface models Energy functions LIDAR data Markov Random Fields Polygonization Region-merging Spatial constraints Splitting techniques Vectorization Optical radar Photogrammetry Remote sensing Roofs Buildings |
description |
This paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the proposed methodology works properly. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-01 2014-05-27T11:26:17Z 2014-05-27T11:26:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.asprs.org/a/publications/proceedings/Milwaukee2011/files/Dal_Poz.pdf American Society for Photogrammetry and Remote Sensing Annual Conference 2011, p. 88-92. http://hdl.handle.net/11449/72970 2-s2.0-84868613977 5041881204275768 0000-0002-6678-9599 |
url |
http://www.asprs.org/a/publications/proceedings/Milwaukee2011/files/Dal_Poz.pdf http://hdl.handle.net/11449/72970 |
identifier_str_mv |
American Society for Photogrammetry and Remote Sensing Annual Conference 2011, p. 88-92. 2-s2.0-84868613977 5041881204275768 0000-0002-6678-9599 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
American Society for Photogrammetry and Remote Sensing Annual Conference 2011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
88-92 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128240873635840 |