Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes

Detalhes bibliográficos
Autor(a) principal: De Sá, Acelino Cardoso [UNESP]
Data de Publicação: 2016
Outros Autores: Cipri, Andrea, González-Calabuig, Andreu, Stradiotto, Nelson Ramos [UNESP], Del Valle, Manel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.snb.2015.08.088
http://hdl.handle.net/11449/172063
Resumo: Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The final architecture of the back-propagation Artificial Neural Network (ANN) model had 36 input neurons and a hidden layer with 5 neurons. The ANN based prediction model has provided satisfactory concentrations for all carbohydrates; the obtained response had a maximum NRMSE of 12.4% with a maximum deviation of slopes in the obtained vs. expected comparison graph of 15%. For all species, the comparison correlation coefficient was of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset.
id UNSP_deb219b183eae6ed9f2e650820ecab04
oai_identifier_str oai:repositorio.unesp.br:11449/172063
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodesArtificial neural networkCarbohydratesElectronic tongueMetal nanoparticlesMulti-walled carbon nanotubesSecond generation ethanolSecond generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The final architecture of the back-propagation Artificial Neural Network (ANN) model had 36 input neurons and a hidden layer with 5 neurons. The ANN based prediction model has provided satisfactory concentrations for all carbohydrates; the obtained response had a maximum NRMSE of 12.4% with a maximum deviation of slopes in the obtained vs. expected comparison graph of 15%. For all species, the comparison correlation coefficient was of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset.Research Executive AgencyDepartment of Analytical Chemistry, Institute of Chemistry, Universidade Estadual Paulista (UNESP), 55 Rua Francisco DegniSensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, BellaterraDepartment of Analytical Chemistry, Institute of Chemistry, Universidade Estadual Paulista (UNESP), 55 Rua Francisco DegniResearch Executive Agency: PITN-GA-2010-264772Universidade Estadual Paulista (Unesp)Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de BarcelonaDe Sá, Acelino Cardoso [UNESP]Cipri, AndreaGonzález-Calabuig, AndreuStradiotto, Nelson Ramos [UNESP]Del Valle, Manel2018-12-11T16:58:21Z2018-12-11T16:58:21Z2016-01-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article645-653application/pdfhttp://dx.doi.org/10.1016/j.snb.2015.08.088Sensors and Actuators, B: Chemical, v. 222, p. 645-653.0925-4005http://hdl.handle.net/11449/17206310.1016/j.snb.2015.08.0882-s2.0-849413607062-s2.0-84941360706.pdf0072173018005712Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSensors and Actuators, B: Chemical1,406info:eu-repo/semantics/openAccess2024-01-19T06:35:18Zoai:repositorio.unesp.br:11449/172063Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:26:43.090854Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
title Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
spellingShingle Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
De Sá, Acelino Cardoso [UNESP]
Artificial neural network
Carbohydrates
Electronic tongue
Metal nanoparticles
Multi-walled carbon nanotubes
Second generation ethanol
title_short Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
title_full Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
title_fullStr Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
title_full_unstemmed Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
title_sort Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
author De Sá, Acelino Cardoso [UNESP]
author_facet De Sá, Acelino Cardoso [UNESP]
Cipri, Andrea
González-Calabuig, Andreu
Stradiotto, Nelson Ramos [UNESP]
Del Valle, Manel
author_role author
author2 Cipri, Andrea
González-Calabuig, Andreu
Stradiotto, Nelson Ramos [UNESP]
Del Valle, Manel
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona
dc.contributor.author.fl_str_mv De Sá, Acelino Cardoso [UNESP]
Cipri, Andrea
González-Calabuig, Andreu
Stradiotto, Nelson Ramos [UNESP]
Del Valle, Manel
dc.subject.por.fl_str_mv Artificial neural network
Carbohydrates
Electronic tongue
Metal nanoparticles
Multi-walled carbon nanotubes
Second generation ethanol
topic Artificial neural network
Carbohydrates
Electronic tongue
Metal nanoparticles
Multi-walled carbon nanotubes
Second generation ethanol
description Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The final architecture of the back-propagation Artificial Neural Network (ANN) model had 36 input neurons and a hidden layer with 5 neurons. The ANN based prediction model has provided satisfactory concentrations for all carbohydrates; the obtained response had a maximum NRMSE of 12.4% with a maximum deviation of slopes in the obtained vs. expected comparison graph of 15%. For all species, the comparison correlation coefficient was of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-12
2018-12-11T16:58:21Z
2018-12-11T16:58:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.snb.2015.08.088
Sensors and Actuators, B: Chemical, v. 222, p. 645-653.
0925-4005
http://hdl.handle.net/11449/172063
10.1016/j.snb.2015.08.088
2-s2.0-84941360706
2-s2.0-84941360706.pdf
0072173018005712
url http://dx.doi.org/10.1016/j.snb.2015.08.088
http://hdl.handle.net/11449/172063
identifier_str_mv Sensors and Actuators, B: Chemical, v. 222, p. 645-653.
0925-4005
10.1016/j.snb.2015.08.088
2-s2.0-84941360706
2-s2.0-84941360706.pdf
0072173018005712
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sensors and Actuators, B: Chemical
1,406
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 645-653
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129521397792768