Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.snb.2015.08.088 http://hdl.handle.net/11449/172063 |
Resumo: | Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The final architecture of the back-propagation Artificial Neural Network (ANN) model had 36 input neurons and a hidden layer with 5 neurons. The ANN based prediction model has provided satisfactory concentrations for all carbohydrates; the obtained response had a maximum NRMSE of 12.4% with a maximum deviation of slopes in the obtained vs. expected comparison graph of 15%. For all species, the comparison correlation coefficient was of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset. |
id |
UNSP_deb219b183eae6ed9f2e650820ecab04 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/172063 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodesArtificial neural networkCarbohydratesElectronic tongueMetal nanoparticlesMulti-walled carbon nanotubesSecond generation ethanolSecond generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The final architecture of the back-propagation Artificial Neural Network (ANN) model had 36 input neurons and a hidden layer with 5 neurons. The ANN based prediction model has provided satisfactory concentrations for all carbohydrates; the obtained response had a maximum NRMSE of 12.4% with a maximum deviation of slopes in the obtained vs. expected comparison graph of 15%. For all species, the comparison correlation coefficient was of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset.Research Executive AgencyDepartment of Analytical Chemistry, Institute of Chemistry, Universidade Estadual Paulista (UNESP), 55 Rua Francisco DegniSensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, BellaterraDepartment of Analytical Chemistry, Institute of Chemistry, Universidade Estadual Paulista (UNESP), 55 Rua Francisco DegniResearch Executive Agency: PITN-GA-2010-264772Universidade Estadual Paulista (Unesp)Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de BarcelonaDe Sá, Acelino Cardoso [UNESP]Cipri, AndreaGonzález-Calabuig, AndreuStradiotto, Nelson Ramos [UNESP]Del Valle, Manel2018-12-11T16:58:21Z2018-12-11T16:58:21Z2016-01-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article645-653application/pdfhttp://dx.doi.org/10.1016/j.snb.2015.08.088Sensors and Actuators, B: Chemical, v. 222, p. 645-653.0925-4005http://hdl.handle.net/11449/17206310.1016/j.snb.2015.08.0882-s2.0-849413607062-s2.0-84941360706.pdf0072173018005712Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSensors and Actuators, B: Chemical1,406info:eu-repo/semantics/openAccess2024-01-19T06:35:18Zoai:repositorio.unesp.br:11449/172063Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:26:43.090854Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes |
title |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes |
spellingShingle |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes De Sá, Acelino Cardoso [UNESP] Artificial neural network Carbohydrates Electronic tongue Metal nanoparticles Multi-walled carbon nanotubes Second generation ethanol |
title_short |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes |
title_full |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes |
title_fullStr |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes |
title_full_unstemmed |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes |
title_sort |
Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes |
author |
De Sá, Acelino Cardoso [UNESP] |
author_facet |
De Sá, Acelino Cardoso [UNESP] Cipri, Andrea González-Calabuig, Andreu Stradiotto, Nelson Ramos [UNESP] Del Valle, Manel |
author_role |
author |
author2 |
Cipri, Andrea González-Calabuig, Andreu Stradiotto, Nelson Ramos [UNESP] Del Valle, Manel |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona |
dc.contributor.author.fl_str_mv |
De Sá, Acelino Cardoso [UNESP] Cipri, Andrea González-Calabuig, Andreu Stradiotto, Nelson Ramos [UNESP] Del Valle, Manel |
dc.subject.por.fl_str_mv |
Artificial neural network Carbohydrates Electronic tongue Metal nanoparticles Multi-walled carbon nanotubes Second generation ethanol |
topic |
Artificial neural network Carbohydrates Electronic tongue Metal nanoparticles Multi-walled carbon nanotubes Second generation ethanol |
description |
Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The final architecture of the back-propagation Artificial Neural Network (ANN) model had 36 input neurons and a hidden layer with 5 neurons. The ANN based prediction model has provided satisfactory concentrations for all carbohydrates; the obtained response had a maximum NRMSE of 12.4% with a maximum deviation of slopes in the obtained vs. expected comparison graph of 15%. For all species, the comparison correlation coefficient was of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-12 2018-12-11T16:58:21Z 2018-12-11T16:58:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.snb.2015.08.088 Sensors and Actuators, B: Chemical, v. 222, p. 645-653. 0925-4005 http://hdl.handle.net/11449/172063 10.1016/j.snb.2015.08.088 2-s2.0-84941360706 2-s2.0-84941360706.pdf 0072173018005712 |
url |
http://dx.doi.org/10.1016/j.snb.2015.08.088 http://hdl.handle.net/11449/172063 |
identifier_str_mv |
Sensors and Actuators, B: Chemical, v. 222, p. 645-653. 0925-4005 10.1016/j.snb.2015.08.088 2-s2.0-84941360706 2-s2.0-84941360706.pdf 0072173018005712 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sensors and Actuators, B: Chemical 1,406 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
645-653 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129521397792768 |