Estimating the degree of non-Markovianity using machine learning

Detalhes bibliográficos
Autor(a) principal: Fanchini, Felipe F. [UNESP]
Data de Publicação: 2021
Outros Autores: Karpat, Göktuǧ, Rossatto, Daniel Z. [UNESP], Norambuena, Ariel, Coto, Raúl
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevA.103.022425
http://hdl.handle.net/11449/207370
Resumo: In the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography.
id UNSP_def1f623b3356630cb4d9469d0abb75f
oai_identifier_str oai:repositorio.unesp.br:11449/207370
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Estimating the degree of non-Markovianity using machine learningIn the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography.Faculdade de Ciências Universidade Estadual Paulista (UNESP)Faculty of Arts and Sciences Department of Physics İzmir University of EconomicsUniversidade Estadual Paulista (UNESP) Campus Experimental de ItapevaCentro de Investigación DAiTA Lab Facultad de Estudios Interdisciplinarios Universidad MayorFaculdade de Ciências Universidade Estadual Paulista (UNESP)Universidade Estadual Paulista (UNESP) Campus Experimental de ItapevaUniversidade Estadual Paulista (Unesp)İzmir University of EconomicsUniversidad MayorFanchini, Felipe F. [UNESP]Karpat, GöktuǧRossatto, Daniel Z. [UNESP]Norambuena, ArielCoto, Raúl2021-06-25T10:54:05Z2021-06-25T10:54:05Z2021-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevA.103.022425Physical Review A, v. 103, n. 2, 2021.2469-99342469-9926http://hdl.handle.net/11449/20737010.1103/PhysRevA.103.0224252-s2.0-8510176318572260481220135650000-0001-9432-1603Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Ainfo:eu-repo/semantics/openAccess2021-11-11T13:35:30Zoai:repositorio.unesp.br:11449/207370Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:28:38.422454Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Estimating the degree of non-Markovianity using machine learning
title Estimating the degree of non-Markovianity using machine learning
spellingShingle Estimating the degree of non-Markovianity using machine learning
Fanchini, Felipe F. [UNESP]
title_short Estimating the degree of non-Markovianity using machine learning
title_full Estimating the degree of non-Markovianity using machine learning
title_fullStr Estimating the degree of non-Markovianity using machine learning
title_full_unstemmed Estimating the degree of non-Markovianity using machine learning
title_sort Estimating the degree of non-Markovianity using machine learning
author Fanchini, Felipe F. [UNESP]
author_facet Fanchini, Felipe F. [UNESP]
Karpat, Göktuǧ
Rossatto, Daniel Z. [UNESP]
Norambuena, Ariel
Coto, Raúl
author_role author
author2 Karpat, Göktuǧ
Rossatto, Daniel Z. [UNESP]
Norambuena, Ariel
Coto, Raúl
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
İzmir University of Economics
Universidad Mayor
dc.contributor.author.fl_str_mv Fanchini, Felipe F. [UNESP]
Karpat, Göktuǧ
Rossatto, Daniel Z. [UNESP]
Norambuena, Ariel
Coto, Raúl
description In the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:54:05Z
2021-06-25T10:54:05Z
2021-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevA.103.022425
Physical Review A, v. 103, n. 2, 2021.
2469-9934
2469-9926
http://hdl.handle.net/11449/207370
10.1103/PhysRevA.103.022425
2-s2.0-85101763185
7226048122013565
0000-0001-9432-1603
url http://dx.doi.org/10.1103/PhysRevA.103.022425
http://hdl.handle.net/11449/207370
identifier_str_mv Physical Review A, v. 103, n. 2, 2021.
2469-9934
2469-9926
10.1103/PhysRevA.103.022425
2-s2.0-85101763185
7226048122013565
0000-0001-9432-1603
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review A
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129073666326528