Estimating the degree of non-Markovianity using machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevA.103.022425 http://hdl.handle.net/11449/207370 |
Resumo: | In the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography. |
id |
UNSP_def1f623b3356630cb4d9469d0abb75f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/207370 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Estimating the degree of non-Markovianity using machine learningIn the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography.Faculdade de Ciências Universidade Estadual Paulista (UNESP)Faculty of Arts and Sciences Department of Physics İzmir University of EconomicsUniversidade Estadual Paulista (UNESP) Campus Experimental de ItapevaCentro de Investigación DAiTA Lab Facultad de Estudios Interdisciplinarios Universidad MayorFaculdade de Ciências Universidade Estadual Paulista (UNESP)Universidade Estadual Paulista (UNESP) Campus Experimental de ItapevaUniversidade Estadual Paulista (Unesp)İzmir University of EconomicsUniversidad MayorFanchini, Felipe F. [UNESP]Karpat, GöktuǧRossatto, Daniel Z. [UNESP]Norambuena, ArielCoto, Raúl2021-06-25T10:54:05Z2021-06-25T10:54:05Z2021-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevA.103.022425Physical Review A, v. 103, n. 2, 2021.2469-99342469-9926http://hdl.handle.net/11449/20737010.1103/PhysRevA.103.0224252-s2.0-8510176318572260481220135650000-0001-9432-1603Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Ainfo:eu-repo/semantics/openAccess2021-11-11T13:35:30Zoai:repositorio.unesp.br:11449/207370Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:28:38.422454Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Estimating the degree of non-Markovianity using machine learning |
title |
Estimating the degree of non-Markovianity using machine learning |
spellingShingle |
Estimating the degree of non-Markovianity using machine learning Fanchini, Felipe F. [UNESP] |
title_short |
Estimating the degree of non-Markovianity using machine learning |
title_full |
Estimating the degree of non-Markovianity using machine learning |
title_fullStr |
Estimating the degree of non-Markovianity using machine learning |
title_full_unstemmed |
Estimating the degree of non-Markovianity using machine learning |
title_sort |
Estimating the degree of non-Markovianity using machine learning |
author |
Fanchini, Felipe F. [UNESP] |
author_facet |
Fanchini, Felipe F. [UNESP] Karpat, Göktuǧ Rossatto, Daniel Z. [UNESP] Norambuena, Ariel Coto, Raúl |
author_role |
author |
author2 |
Karpat, Göktuǧ Rossatto, Daniel Z. [UNESP] Norambuena, Ariel Coto, Raúl |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) İzmir University of Economics Universidad Mayor |
dc.contributor.author.fl_str_mv |
Fanchini, Felipe F. [UNESP] Karpat, Göktuǧ Rossatto, Daniel Z. [UNESP] Norambuena, Ariel Coto, Raúl |
description |
In the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:54:05Z 2021-06-25T10:54:05Z 2021-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevA.103.022425 Physical Review A, v. 103, n. 2, 2021. 2469-9934 2469-9926 http://hdl.handle.net/11449/207370 10.1103/PhysRevA.103.022425 2-s2.0-85101763185 7226048122013565 0000-0001-9432-1603 |
url |
http://dx.doi.org/10.1103/PhysRevA.103.022425 http://hdl.handle.net/11449/207370 |
identifier_str_mv |
Physical Review A, v. 103, n. 2, 2021. 2469-9934 2469-9926 10.1103/PhysRevA.103.022425 2-s2.0-85101763185 7226048122013565 0000-0001-9432-1603 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review A |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129073666326528 |