Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physa.2016.07.067 http://hdl.handle.net/11449/161972 |
Resumo: | We address the reliability of the Optimized Perturbation Theory (OPT) in the context of the 0-dimensional O(N) scalar field model. The effective potential, the self-energy and the 1PI four-point Green's function for the model are computed using different optimization schemes and the results contrasted to the exact results for the model. Our results are also compared to those obtained with the 1/N-expansion and with those from ordinary perturbation theory. The OPT results are shown to be stable even at large couplings and to have better convergence properties than the ones produced in the 1/N-expansion. It is also shown that the principle of minimal sensitive optimization procedure used in conjunction with the OPT method tends to always produce better results, in particular when applied directly to the self-energy. (C) 2016 Elsevier B.V. All rights reserved. |
id |
UNSP_df7455fdc6d54d86aa2f1c2ed600884e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161972 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model0-dimensional O(N) scalar field modelOptimized perturbation theory1/N-expansionWe address the reliability of the Optimized Perturbation Theory (OPT) in the context of the 0-dimensional O(N) scalar field model. The effective potential, the self-energy and the 1PI four-point Green's function for the model are computed using different optimization schemes and the results contrasted to the exact results for the model. Our results are also compared to those obtained with the 1/N-expansion and with those from ordinary perturbation theory. The OPT results are shown to be stable even at large couplings and to have better convergence properties than the ones produced in the 1/N-expansion. It is also shown that the principle of minimal sensitive optimization procedure used in conjunction with the OPT method tends to always produce better results, in particular when applied directly to the self-energy. (C) 2016 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, SP, BrazilUniv Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, BrazilKent State Univ, Dept Phys, Kent, OH 44242 USAUniv Estado Rio de Janeiro, Dept Fis Teor, BR-20550013 Rio De Janeiro, RJ, BrazilUniv Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, SP, BrazilCNPq: 475110/2013-7CNPq: 232766/2014-2CNPq: 308828/2013-5CNPq: 303377/2013-5CNPq: 147716/2014.4FAPERJ: E-26/201.424/2014Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal de Sergipe (UFS)Kent State UnivUniversidade do Estado do Rio de Janeiro (UERJ)Rosa, Derick S. [UNESP]Farias, R. L. S.Ramos, Rudnei O.2018-11-26T17:06:23Z2018-11-26T17:06:23Z2016-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11-26application/pdfhttp://dx.doi.org/10.1016/j.physa.2016.07.067Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 464, p. 11-26, 2016.0378-4371http://hdl.handle.net/11449/16197210.1016/j.physa.2016.07.067WOS:000384382600002WOS000384382600002.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A-statistical Mechanics And Its Applications0,773info:eu-repo/semantics/openAccess2023-12-24T06:18:13Zoai:repositorio.unesp.br:11449/161972Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:10:39.985520Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model |
title |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model |
spellingShingle |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model Rosa, Derick S. [UNESP] 0-dimensional O(N) scalar field model Optimized perturbation theory 1/N-expansion |
title_short |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model |
title_full |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model |
title_fullStr |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model |
title_full_unstemmed |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model |
title_sort |
Reliability of the optimized perturbation theory in the 0-dimensional O(N) scalar field model |
author |
Rosa, Derick S. [UNESP] |
author_facet |
Rosa, Derick S. [UNESP] Farias, R. L. S. Ramos, Rudnei O. |
author_role |
author |
author2 |
Farias, R. L. S. Ramos, Rudnei O. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de Sergipe (UFS) Kent State Univ Universidade do Estado do Rio de Janeiro (UERJ) |
dc.contributor.author.fl_str_mv |
Rosa, Derick S. [UNESP] Farias, R. L. S. Ramos, Rudnei O. |
dc.subject.por.fl_str_mv |
0-dimensional O(N) scalar field model Optimized perturbation theory 1/N-expansion |
topic |
0-dimensional O(N) scalar field model Optimized perturbation theory 1/N-expansion |
description |
We address the reliability of the Optimized Perturbation Theory (OPT) in the context of the 0-dimensional O(N) scalar field model. The effective potential, the self-energy and the 1PI four-point Green's function for the model are computed using different optimization schemes and the results contrasted to the exact results for the model. Our results are also compared to those obtained with the 1/N-expansion and with those from ordinary perturbation theory. The OPT results are shown to be stable even at large couplings and to have better convergence properties than the ones produced in the 1/N-expansion. It is also shown that the principle of minimal sensitive optimization procedure used in conjunction with the OPT method tends to always produce better results, in particular when applied directly to the self-energy. (C) 2016 Elsevier B.V. All rights reserved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-15 2018-11-26T17:06:23Z 2018-11-26T17:06:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physa.2016.07.067 Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 464, p. 11-26, 2016. 0378-4371 http://hdl.handle.net/11449/161972 10.1016/j.physa.2016.07.067 WOS:000384382600002 WOS000384382600002.pdf |
url |
http://dx.doi.org/10.1016/j.physa.2016.07.067 http://hdl.handle.net/11449/161972 |
identifier_str_mv |
Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 464, p. 11-26, 2016. 0378-4371 10.1016/j.physa.2016.07.067 WOS:000384382600002 WOS000384382600002.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica A-statistical Mechanics And Its Applications 0,773 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11-26 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129294077001728 |