Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods

Detalhes bibliográficos
Autor(a) principal: Betemps, Débora Leitzke
Data de Publicação: 2020
Outros Autores: De Paula, Betania Vahl, Parent, Serge-Étienne, Galarça, Simone P., Mayer, Newton A., Marodin, Gilmar A.B., Rozane, Danilo E. [UNESP], Natale, William, Melo, George Wellington B., Parent, Léon E., Brunetto, Gustavo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/agronomy10060900
http://hdl.handle.net/11449/200710
Resumo: Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.
id UNSP_df8d235fd71964da0560f2194db9789f
oai_identifier_str oai:repositorio.unesp.br:11449/200710
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methodsCentered log ratioCompositional entityHumboldtian data setsLocal diagnosisMachine learningNutrient limitationsPeach treesRandom forestRegional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.Departamento dos Solos Universidade Federal de Santa Maria, Av. Roraima, 1000 CamobiCampus Cerro Largo Universidade Federal da Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580-Bairro São PedroDepartment of Soils and Agrifood Engineering Laval UniversityAscar Emater—Piratini, Rua 20 de Setembro, 158-CentroEmbrapa Clima Temperado Centro de Pesquisa Agropecuária de Clima Temperado, BR 392, km 78Departemento de Horticultura e Silvicultura Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, C.P. 15.100, AgronomiaDepartamento de Engenharia Agronômica Universidade Estadual de São Paulo (UNESP) Campus de Registro, Av. Nelson Brihi BadurDepartamento de Fitotecnia Universidade Federal do Ceará (UFC), Av. Mister Hull, 2977-Campus do PiciEmbrapa Uva e Vinho, Rua Livramento, 515Departamento de Engenharia Agronômica Universidade Estadual de São Paulo (UNESP) Campus de Registro, Av. Nelson Brihi BadurUniversidade Federal de Santa MariaUniversidade Federal da Fronteira SulLaval UniversityAscar Emater—PiratiniEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Universidade Federal do Rio Grande do SulUniversidade Estadual Paulista (Unesp)Universidade Federal do Ceará (UFC)Betemps, Débora LeitzkeDe Paula, Betania VahlParent, Serge-ÉtienneGalarça, Simone P.Mayer, Newton A.Marodin, Gilmar A.B.Rozane, Danilo E. [UNESP]Natale, WilliamMelo, George Wellington B.Parent, Léon E.Brunetto, Gustavo2020-12-12T02:13:59Z2020-12-12T02:13:59Z2020-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/agronomy10060900Agronomy, v. 10, n. 6, 2020.2073-4395http://hdl.handle.net/11449/20071010.3390/agronomy100609002-s2.0-85087493668Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAgronomyinfo:eu-repo/semantics/openAccess2024-05-03T13:19:51Zoai:repositorio.unesp.br:11449/200710Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:41:24.647322Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
title Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
spellingShingle Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
Betemps, Débora Leitzke
Centered log ratio
Compositional entity
Humboldtian data sets
Local diagnosis
Machine learning
Nutrient limitations
Peach trees
Random forest
title_short Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
title_full Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
title_fullStr Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
title_full_unstemmed Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
title_sort Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
author Betemps, Débora Leitzke
author_facet Betemps, Débora Leitzke
De Paula, Betania Vahl
Parent, Serge-Étienne
Galarça, Simone P.
Mayer, Newton A.
Marodin, Gilmar A.B.
Rozane, Danilo E. [UNESP]
Natale, William
Melo, George Wellington B.
Parent, Léon E.
Brunetto, Gustavo
author_role author
author2 De Paula, Betania Vahl
Parent, Serge-Étienne
Galarça, Simone P.
Mayer, Newton A.
Marodin, Gilmar A.B.
Rozane, Danilo E. [UNESP]
Natale, William
Melo, George Wellington B.
Parent, Léon E.
Brunetto, Gustavo
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Santa Maria
Universidade Federal da Fronteira Sul
Laval University
Ascar Emater—Piratini
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
Universidade Federal do Rio Grande do Sul
Universidade Estadual Paulista (Unesp)
Universidade Federal do Ceará (UFC)
dc.contributor.author.fl_str_mv Betemps, Débora Leitzke
De Paula, Betania Vahl
Parent, Serge-Étienne
Galarça, Simone P.
Mayer, Newton A.
Marodin, Gilmar A.B.
Rozane, Danilo E. [UNESP]
Natale, William
Melo, George Wellington B.
Parent, Léon E.
Brunetto, Gustavo
dc.subject.por.fl_str_mv Centered log ratio
Compositional entity
Humboldtian data sets
Local diagnosis
Machine learning
Nutrient limitations
Peach trees
Random forest
topic Centered log ratio
Compositional entity
Humboldtian data sets
Local diagnosis
Machine learning
Nutrient limitations
Peach trees
Random forest
description Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:13:59Z
2020-12-12T02:13:59Z
2020-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/agronomy10060900
Agronomy, v. 10, n. 6, 2020.
2073-4395
http://hdl.handle.net/11449/200710
10.3390/agronomy10060900
2-s2.0-85087493668
url http://dx.doi.org/10.3390/agronomy10060900
http://hdl.handle.net/11449/200710
identifier_str_mv Agronomy, v. 10, n. 6, 2020.
2073-4395
10.3390/agronomy10060900
2-s2.0-85087493668
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Agronomy
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128265125101568