Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/agronomy10060900 http://hdl.handle.net/11449/200710 |
Resumo: | Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders. |
id |
UNSP_df8d235fd71964da0560f2194db9789f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/200710 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methodsCentered log ratioCompositional entityHumboldtian data setsLocal diagnosisMachine learningNutrient limitationsPeach treesRandom forestRegional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.Departamento dos Solos Universidade Federal de Santa Maria, Av. Roraima, 1000 CamobiCampus Cerro Largo Universidade Federal da Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580-Bairro São PedroDepartment of Soils and Agrifood Engineering Laval UniversityAscar Emater—Piratini, Rua 20 de Setembro, 158-CentroEmbrapa Clima Temperado Centro de Pesquisa Agropecuária de Clima Temperado, BR 392, km 78Departemento de Horticultura e Silvicultura Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, C.P. 15.100, AgronomiaDepartamento de Engenharia Agronômica Universidade Estadual de São Paulo (UNESP) Campus de Registro, Av. Nelson Brihi BadurDepartamento de Fitotecnia Universidade Federal do Ceará (UFC), Av. Mister Hull, 2977-Campus do PiciEmbrapa Uva e Vinho, Rua Livramento, 515Departamento de Engenharia Agronômica Universidade Estadual de São Paulo (UNESP) Campus de Registro, Av. Nelson Brihi BadurUniversidade Federal de Santa MariaUniversidade Federal da Fronteira SulLaval UniversityAscar Emater—PiratiniEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Universidade Federal do Rio Grande do SulUniversidade Estadual Paulista (Unesp)Universidade Federal do Ceará (UFC)Betemps, Débora LeitzkeDe Paula, Betania VahlParent, Serge-ÉtienneGalarça, Simone P.Mayer, Newton A.Marodin, Gilmar A.B.Rozane, Danilo E. [UNESP]Natale, WilliamMelo, George Wellington B.Parent, Léon E.Brunetto, Gustavo2020-12-12T02:13:59Z2020-12-12T02:13:59Z2020-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/agronomy10060900Agronomy, v. 10, n. 6, 2020.2073-4395http://hdl.handle.net/11449/20071010.3390/agronomy100609002-s2.0-85087493668Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAgronomyinfo:eu-repo/semantics/openAccess2024-05-03T13:19:51Zoai:repositorio.unesp.br:11449/200710Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:41:24.647322Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods |
title |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods |
spellingShingle |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods Betemps, Débora Leitzke Centered log ratio Compositional entity Humboldtian data sets Local diagnosis Machine learning Nutrient limitations Peach trees Random forest |
title_short |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods |
title_full |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods |
title_fullStr |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods |
title_full_unstemmed |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods |
title_sort |
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods |
author |
Betemps, Débora Leitzke |
author_facet |
Betemps, Débora Leitzke De Paula, Betania Vahl Parent, Serge-Étienne Galarça, Simone P. Mayer, Newton A. Marodin, Gilmar A.B. Rozane, Danilo E. [UNESP] Natale, William Melo, George Wellington B. Parent, Léon E. Brunetto, Gustavo |
author_role |
author |
author2 |
De Paula, Betania Vahl Parent, Serge-Étienne Galarça, Simone P. Mayer, Newton A. Marodin, Gilmar A.B. Rozane, Danilo E. [UNESP] Natale, William Melo, George Wellington B. Parent, Léon E. Brunetto, Gustavo |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Santa Maria Universidade Federal da Fronteira Sul Laval University Ascar Emater—Piratini Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Universidade Federal do Rio Grande do Sul Universidade Estadual Paulista (Unesp) Universidade Federal do Ceará (UFC) |
dc.contributor.author.fl_str_mv |
Betemps, Débora Leitzke De Paula, Betania Vahl Parent, Serge-Étienne Galarça, Simone P. Mayer, Newton A. Marodin, Gilmar A.B. Rozane, Danilo E. [UNESP] Natale, William Melo, George Wellington B. Parent, Léon E. Brunetto, Gustavo |
dc.subject.por.fl_str_mv |
Centered log ratio Compositional entity Humboldtian data sets Local diagnosis Machine learning Nutrient limitations Peach trees Random forest |
topic |
Centered log ratio Compositional entity Humboldtian data sets Local diagnosis Machine learning Nutrient limitations Peach trees Random forest |
description |
Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:13:59Z 2020-12-12T02:13:59Z 2020-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/agronomy10060900 Agronomy, v. 10, n. 6, 2020. 2073-4395 http://hdl.handle.net/11449/200710 10.3390/agronomy10060900 2-s2.0-85087493668 |
url |
http://dx.doi.org/10.3390/agronomy10060900 http://hdl.handle.net/11449/200710 |
identifier_str_mv |
Agronomy, v. 10, n. 6, 2020. 2073-4395 10.3390/agronomy10060900 2-s2.0-85087493668 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Agronomy |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128265125101568 |