Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.

Detalhes bibliográficos
Autor(a) principal: BETEMPS, D. L.
Data de Publicação: 2020
Outros Autores: PAULA, B. V. de, PARENT, S.-E., GALARÇA, S. P., MAYER, N. A., MARODIN, G. A. B., ROZANE, D. E., NATALE, W., MELO, G. W. B. de, PARENT, L. E., BRUNETTO, G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123550
Resumo: Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1 Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in 'enchanting islands'. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis diered from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.
id EMBR_8d7f26d7d436cc805c390e40bd501fa2
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1123550
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.PrunusPêssegoPorta EnxertoRegional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1 Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in 'enchanting islands'. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis diered from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.DÉBORA LEITZKE BETEMPS, UFSM; UFFS; BETANIA VAHL DE PAULA, UFSM; SERGE-ÉTIENNE PARENT, LAVAL UNIVERSITY; SIMONE P. GALARÇA, ASCAR EMATER; NEWTON ALEX MAYER, CPACT; GILMAR A. B. MARODIN, UFRGS; DANILO E. ROZANE, UNESP; WILLIAM NATALE, UFC; GEORGE WELLINGTON BASTOS DE MELO, CNPUV; LÉON E. PARENT, UFSM; LAVAL UNIVERSITY; GUSTAVO BRUNETTO, UFSM.BETEMPS, D. L.PAULA, B. V. dePARENT, S.-E.GALARÇA, S. P.MAYER, N. A.MARODIN, G. A. B.ROZANE, D. E.NATALE, W.MELO, G. W. B. dePARENT, L. E.BRUNETTO, G.2020-07-02T11:11:02Z2020-07-02T11:11:02Z2020-07-012020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21 p.Agronomy, v. 10, n. 6, June 2020.2073-4395http://www.alice.cnptia.embrapa.br/alice/handle/doc/112355010.3390/agronomy10060900enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-07-02T11:11:09Zoai:www.alice.cnptia.embrapa.br:doc/1123550Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-07-02T11:11:09Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
title Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
spellingShingle Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
BETEMPS, D. L.
Prunus
Pêssego
Porta Enxerto
title_short Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
title_full Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
title_fullStr Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
title_full_unstemmed Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
title_sort Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
author BETEMPS, D. L.
author_facet BETEMPS, D. L.
PAULA, B. V. de
PARENT, S.-E.
GALARÇA, S. P.
MAYER, N. A.
MARODIN, G. A. B.
ROZANE, D. E.
NATALE, W.
MELO, G. W. B. de
PARENT, L. E.
BRUNETTO, G.
author_role author
author2 PAULA, B. V. de
PARENT, S.-E.
GALARÇA, S. P.
MAYER, N. A.
MARODIN, G. A. B.
ROZANE, D. E.
NATALE, W.
MELO, G. W. B. de
PARENT, L. E.
BRUNETTO, G.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv DÉBORA LEITZKE BETEMPS, UFSM; UFFS; BETANIA VAHL DE PAULA, UFSM; SERGE-ÉTIENNE PARENT, LAVAL UNIVERSITY; SIMONE P. GALARÇA, ASCAR EMATER; NEWTON ALEX MAYER, CPACT; GILMAR A. B. MARODIN, UFRGS; DANILO E. ROZANE, UNESP; WILLIAM NATALE, UFC; GEORGE WELLINGTON BASTOS DE MELO, CNPUV; LÉON E. PARENT, UFSM; LAVAL UNIVERSITY; GUSTAVO BRUNETTO, UFSM.
dc.contributor.author.fl_str_mv BETEMPS, D. L.
PAULA, B. V. de
PARENT, S.-E.
GALARÇA, S. P.
MAYER, N. A.
MARODIN, G. A. B.
ROZANE, D. E.
NATALE, W.
MELO, G. W. B. de
PARENT, L. E.
BRUNETTO, G.
dc.subject.por.fl_str_mv Prunus
Pêssego
Porta Enxerto
topic Prunus
Pêssego
Porta Enxerto
description Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1 Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in 'enchanting islands'. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis diered from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-02T11:11:02Z
2020-07-02T11:11:02Z
2020-07-01
2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Agronomy, v. 10, n. 6, June 2020.
2073-4395
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123550
10.3390/agronomy10060900
identifier_str_mv Agronomy, v. 10, n. 6, June 2020.
2073-4395
10.3390/agronomy10060900
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123550
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 21 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695593639706624