Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123550 |
Resumo: | Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1 Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in 'enchanting islands'. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis diered from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders. |
id |
EMBR_8d7f26d7d436cc805c390e40bd501fa2 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1123550 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods.PrunusPêssegoPorta EnxertoRegional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1 Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in 'enchanting islands'. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis diered from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.DÉBORA LEITZKE BETEMPS, UFSM; UFFS; BETANIA VAHL DE PAULA, UFSM; SERGE-ÉTIENNE PARENT, LAVAL UNIVERSITY; SIMONE P. GALARÇA, ASCAR EMATER; NEWTON ALEX MAYER, CPACT; GILMAR A. B. MARODIN, UFRGS; DANILO E. ROZANE, UNESP; WILLIAM NATALE, UFC; GEORGE WELLINGTON BASTOS DE MELO, CNPUV; LÉON E. PARENT, UFSM; LAVAL UNIVERSITY; GUSTAVO BRUNETTO, UFSM.BETEMPS, D. L.PAULA, B. V. dePARENT, S.-E.GALARÇA, S. P.MAYER, N. A.MARODIN, G. A. B.ROZANE, D. E.NATALE, W.MELO, G. W. B. dePARENT, L. E.BRUNETTO, G.2020-07-02T11:11:02Z2020-07-02T11:11:02Z2020-07-012020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21 p.Agronomy, v. 10, n. 6, June 2020.2073-4395http://www.alice.cnptia.embrapa.br/alice/handle/doc/112355010.3390/agronomy10060900enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-07-02T11:11:09Zoai:www.alice.cnptia.embrapa.br:doc/1123550Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-07-02T11:11:09Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. |
title |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. |
spellingShingle |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. BETEMPS, D. L. Prunus Pêssego Porta Enxerto |
title_short |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. |
title_full |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. |
title_fullStr |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. |
title_full_unstemmed |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. |
title_sort |
Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. |
author |
BETEMPS, D. L. |
author_facet |
BETEMPS, D. L. PAULA, B. V. de PARENT, S.-E. GALARÇA, S. P. MAYER, N. A. MARODIN, G. A. B. ROZANE, D. E. NATALE, W. MELO, G. W. B. de PARENT, L. E. BRUNETTO, G. |
author_role |
author |
author2 |
PAULA, B. V. de PARENT, S.-E. GALARÇA, S. P. MAYER, N. A. MARODIN, G. A. B. ROZANE, D. E. NATALE, W. MELO, G. W. B. de PARENT, L. E. BRUNETTO, G. |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
DÉBORA LEITZKE BETEMPS, UFSM; UFFS; BETANIA VAHL DE PAULA, UFSM; SERGE-ÉTIENNE PARENT, LAVAL UNIVERSITY; SIMONE P. GALARÇA, ASCAR EMATER; NEWTON ALEX MAYER, CPACT; GILMAR A. B. MARODIN, UFRGS; DANILO E. ROZANE, UNESP; WILLIAM NATALE, UFC; GEORGE WELLINGTON BASTOS DE MELO, CNPUV; LÉON E. PARENT, UFSM; LAVAL UNIVERSITY; GUSTAVO BRUNETTO, UFSM. |
dc.contributor.author.fl_str_mv |
BETEMPS, D. L. PAULA, B. V. de PARENT, S.-E. GALARÇA, S. P. MAYER, N. A. MARODIN, G. A. B. ROZANE, D. E. NATALE, W. MELO, G. W. B. de PARENT, L. E. BRUNETTO, G. |
dc.subject.por.fl_str_mv |
Prunus Pêssego Porta Enxerto |
topic |
Prunus Pêssego Porta Enxerto |
description |
Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1 Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in 'enchanting islands'. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis diered from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-02T11:11:02Z 2020-07-02T11:11:02Z 2020-07-01 2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Agronomy, v. 10, n. 6, June 2020. 2073-4395 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123550 10.3390/agronomy10060900 |
identifier_str_mv |
Agronomy, v. 10, n. 6, June 2020. 2073-4395 10.3390/agronomy10060900 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123550 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21 p. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695593639706624 |