Instantaneous frequencies in the Kuramoto model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevE.102.052127 http://hdl.handle.net/11449/209691 |
Resumo: | Using the main results of the Kuramoto theory of globally coupled phase oscillators combined with methods from probability and generalized function theory in a geometric analysis, we extend Kuramoto's results and obtain a mathematical description of the instantaneous frequency (phase-velocity) distribution. Our result is validated against numerical simulations, and we illustrate it in cases in which the natural frequencies have normal and Beta distributions. In both cases, we vary the coupling strength and compare systematically the distribution of time-averaged frequencies (a known result of Kuramoto theory) to that of instantaneous frequencies, focusing on their qualitative differences near the synchronized frequency and in their tails. For a class of natural frequency distributions with power-law tails, which includes the Cauchy-Lorentz distribution, we analyze the tails of the instantaneous frequency distribution by means of an asymptotic formula obtained from a power-series expansion. |
id |
UNSP_e072e32425d1a22303592d2dac4c07b1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/209691 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Instantaneous frequencies in the Kuramoto modelUsing the main results of the Kuramoto theory of globally coupled phase oscillators combined with methods from probability and generalized function theory in a geometric analysis, we extend Kuramoto's results and obtain a mathematical description of the instantaneous frequency (phase-velocity) distribution. Our result is validated against numerical simulations, and we illustrate it in cases in which the natural frequencies have normal and Beta distributions. In both cases, we vary the coupling strength and compare systematically the distribution of time-averaged frequencies (a known result of Kuramoto theory) to that of instantaneous frequencies, focusing on their qualitative differences near the synchronized frequency and in their tails. For a class of natural frequency distributions with power-law tails, which includes the Cauchy-Lorentz distribution, we analyze the tails of the instantaneous frequency distribution by means of an asymptotic formula obtained from a power-series expansion.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Dept Fis, BR-13506900 Rio Claro, SP, BrazilUniv Paris Saclay, Serv Phys Etat Condense, CEA Saclay, CEA,CNRS, F-91191 Gif Sur Yvette, FranceComputat Sci Res Ctr, Beijing 100193, Peoples R ChinaSorbonne Univ, Lab Phys Theor Mat Condensee, CNRS, F-75005 Paris, FranceUniv Estadual Paulista, Dept Fis, BR-13506900 Rio Claro, SP, BrazilFAPESP: 2019/12930-9CNPq: 301318/2019-0FAPESP: 2019/14038-6Amer Physical SocUniversidade Estadual Paulista (Unesp)Univ Paris SaclayComputat Sci Res CtrSorbonne UnivFonseca, Julio D. da [UNESP]Leonel, Edson D. [UNESP]Chate, Hugues2021-06-25T12:26:07Z2021-06-25T12:26:07Z2020-11-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18http://dx.doi.org/10.1103/PhysRevE.102.052127Physical Review E. College Pk: Amer Physical Soc, v. 102, n. 5, 18 p., 2020.2470-0045http://hdl.handle.net/11449/20969110.1103/PhysRevE.102.052127WOS:000592521200003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Einfo:eu-repo/semantics/openAccess2021-10-23T19:49:58Zoai:repositorio.unesp.br:11449/209691Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:34:21.752639Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Instantaneous frequencies in the Kuramoto model |
title |
Instantaneous frequencies in the Kuramoto model |
spellingShingle |
Instantaneous frequencies in the Kuramoto model Fonseca, Julio D. da [UNESP] |
title_short |
Instantaneous frequencies in the Kuramoto model |
title_full |
Instantaneous frequencies in the Kuramoto model |
title_fullStr |
Instantaneous frequencies in the Kuramoto model |
title_full_unstemmed |
Instantaneous frequencies in the Kuramoto model |
title_sort |
Instantaneous frequencies in the Kuramoto model |
author |
Fonseca, Julio D. da [UNESP] |
author_facet |
Fonseca, Julio D. da [UNESP] Leonel, Edson D. [UNESP] Chate, Hugues |
author_role |
author |
author2 |
Leonel, Edson D. [UNESP] Chate, Hugues |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Univ Paris Saclay Computat Sci Res Ctr Sorbonne Univ |
dc.contributor.author.fl_str_mv |
Fonseca, Julio D. da [UNESP] Leonel, Edson D. [UNESP] Chate, Hugues |
description |
Using the main results of the Kuramoto theory of globally coupled phase oscillators combined with methods from probability and generalized function theory in a geometric analysis, we extend Kuramoto's results and obtain a mathematical description of the instantaneous frequency (phase-velocity) distribution. Our result is validated against numerical simulations, and we illustrate it in cases in which the natural frequencies have normal and Beta distributions. In both cases, we vary the coupling strength and compare systematically the distribution of time-averaged frequencies (a known result of Kuramoto theory) to that of instantaneous frequencies, focusing on their qualitative differences near the synchronized frequency and in their tails. For a class of natural frequency distributions with power-law tails, which includes the Cauchy-Lorentz distribution, we analyze the tails of the instantaneous frequency distribution by means of an asymptotic formula obtained from a power-series expansion. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-23 2021-06-25T12:26:07Z 2021-06-25T12:26:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevE.102.052127 Physical Review E. College Pk: Amer Physical Soc, v. 102, n. 5, 18 p., 2020. 2470-0045 http://hdl.handle.net/11449/209691 10.1103/PhysRevE.102.052127 WOS:000592521200003 |
url |
http://dx.doi.org/10.1103/PhysRevE.102.052127 http://hdl.handle.net/11449/209691 |
identifier_str_mv |
Physical Review E. College Pk: Amer Physical Soc, v. 102, n. 5, 18 p., 2020. 2470-0045 10.1103/PhysRevE.102.052127 WOS:000592521200003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review E |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
18 |
dc.publisher.none.fl_str_mv |
Amer Physical Soc |
publisher.none.fl_str_mv |
Amer Physical Soc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129337664208896 |