Instantaneous frequencies in the Kuramoto model

Detalhes bibliográficos
Autor(a) principal: Fonseca, Julio D. da [UNESP]
Data de Publicação: 2020
Outros Autores: Leonel, Edson D. [UNESP], Chate, Hugues
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevE.102.052127
http://hdl.handle.net/11449/209691
Resumo: Using the main results of the Kuramoto theory of globally coupled phase oscillators combined with methods from probability and generalized function theory in a geometric analysis, we extend Kuramoto's results and obtain a mathematical description of the instantaneous frequency (phase-velocity) distribution. Our result is validated against numerical simulations, and we illustrate it in cases in which the natural frequencies have normal and Beta distributions. In both cases, we vary the coupling strength and compare systematically the distribution of time-averaged frequencies (a known result of Kuramoto theory) to that of instantaneous frequencies, focusing on their qualitative differences near the synchronized frequency and in their tails. For a class of natural frequency distributions with power-law tails, which includes the Cauchy-Lorentz distribution, we analyze the tails of the instantaneous frequency distribution by means of an asymptotic formula obtained from a power-series expansion.
id UNSP_e072e32425d1a22303592d2dac4c07b1
oai_identifier_str oai:repositorio.unesp.br:11449/209691
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Instantaneous frequencies in the Kuramoto modelUsing the main results of the Kuramoto theory of globally coupled phase oscillators combined with methods from probability and generalized function theory in a geometric analysis, we extend Kuramoto's results and obtain a mathematical description of the instantaneous frequency (phase-velocity) distribution. Our result is validated against numerical simulations, and we illustrate it in cases in which the natural frequencies have normal and Beta distributions. In both cases, we vary the coupling strength and compare systematically the distribution of time-averaged frequencies (a known result of Kuramoto theory) to that of instantaneous frequencies, focusing on their qualitative differences near the synchronized frequency and in their tails. For a class of natural frequency distributions with power-law tails, which includes the Cauchy-Lorentz distribution, we analyze the tails of the instantaneous frequency distribution by means of an asymptotic formula obtained from a power-series expansion.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Dept Fis, BR-13506900 Rio Claro, SP, BrazilUniv Paris Saclay, Serv Phys Etat Condense, CEA Saclay, CEA,CNRS, F-91191 Gif Sur Yvette, FranceComputat Sci Res Ctr, Beijing 100193, Peoples R ChinaSorbonne Univ, Lab Phys Theor Mat Condensee, CNRS, F-75005 Paris, FranceUniv Estadual Paulista, Dept Fis, BR-13506900 Rio Claro, SP, BrazilFAPESP: 2019/12930-9CNPq: 301318/2019-0FAPESP: 2019/14038-6Amer Physical SocUniversidade Estadual Paulista (Unesp)Univ Paris SaclayComputat Sci Res CtrSorbonne UnivFonseca, Julio D. da [UNESP]Leonel, Edson D. [UNESP]Chate, Hugues2021-06-25T12:26:07Z2021-06-25T12:26:07Z2020-11-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18http://dx.doi.org/10.1103/PhysRevE.102.052127Physical Review E. College Pk: Amer Physical Soc, v. 102, n. 5, 18 p., 2020.2470-0045http://hdl.handle.net/11449/20969110.1103/PhysRevE.102.052127WOS:000592521200003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Einfo:eu-repo/semantics/openAccess2021-10-23T19:49:58Zoai:repositorio.unesp.br:11449/209691Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:34:21.752639Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Instantaneous frequencies in the Kuramoto model
title Instantaneous frequencies in the Kuramoto model
spellingShingle Instantaneous frequencies in the Kuramoto model
Fonseca, Julio D. da [UNESP]
title_short Instantaneous frequencies in the Kuramoto model
title_full Instantaneous frequencies in the Kuramoto model
title_fullStr Instantaneous frequencies in the Kuramoto model
title_full_unstemmed Instantaneous frequencies in the Kuramoto model
title_sort Instantaneous frequencies in the Kuramoto model
author Fonseca, Julio D. da [UNESP]
author_facet Fonseca, Julio D. da [UNESP]
Leonel, Edson D. [UNESP]
Chate, Hugues
author_role author
author2 Leonel, Edson D. [UNESP]
Chate, Hugues
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Univ Paris Saclay
Computat Sci Res Ctr
Sorbonne Univ
dc.contributor.author.fl_str_mv Fonseca, Julio D. da [UNESP]
Leonel, Edson D. [UNESP]
Chate, Hugues
description Using the main results of the Kuramoto theory of globally coupled phase oscillators combined with methods from probability and generalized function theory in a geometric analysis, we extend Kuramoto's results and obtain a mathematical description of the instantaneous frequency (phase-velocity) distribution. Our result is validated against numerical simulations, and we illustrate it in cases in which the natural frequencies have normal and Beta distributions. In both cases, we vary the coupling strength and compare systematically the distribution of time-averaged frequencies (a known result of Kuramoto theory) to that of instantaneous frequencies, focusing on their qualitative differences near the synchronized frequency and in their tails. For a class of natural frequency distributions with power-law tails, which includes the Cauchy-Lorentz distribution, we analyze the tails of the instantaneous frequency distribution by means of an asymptotic formula obtained from a power-series expansion.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-23
2021-06-25T12:26:07Z
2021-06-25T12:26:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevE.102.052127
Physical Review E. College Pk: Amer Physical Soc, v. 102, n. 5, 18 p., 2020.
2470-0045
http://hdl.handle.net/11449/209691
10.1103/PhysRevE.102.052127
WOS:000592521200003
url http://dx.doi.org/10.1103/PhysRevE.102.052127
http://hdl.handle.net/11449/209691
identifier_str_mv Physical Review E. College Pk: Amer Physical Soc, v. 102, n. 5, 18 p., 2020.
2470-0045
10.1103/PhysRevE.102.052127
WOS:000592521200003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review E
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 18
dc.publisher.none.fl_str_mv Amer Physical Soc
publisher.none.fl_str_mv Amer Physical Soc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129337664208896