A fast algorithm for simulation of periodic flows using discrete vortex particles

Detalhes bibliográficos
Autor(a) principal: Ricciardi, Tulio R.
Data de Publicação: 2017
Outros Autores: Wolf, William R., Bimbato, Alex M. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s40430-017-0902-x
http://hdl.handle.net/11449/159889
Resumo: We present a novel fast algorithm for flow simulations using the discrete vortex method, DVM, for problems with periodic boundary conditions. In the DVM, the solution of the velocity field induced by interactions among N discrete vortex particles is governed by the Biot-Savart law and, therefore, leads to a computational cost proportional to O(). The proposed algorithm combines exponential and power series expansions implemented using a divide and conquer strategy to accelerate the calculation of the cotangent kernel that models periodic boundary conditions. The fast multipole method, FMM, is applied for the solution of singular terms appearing in the power series expansion and also for the exponential series expansion. Error and computational cost analyses are performed for the individual steps of the algorithm for double and quadruple machine precision. The current method presents more accurate solutions when compared to those obtained by periodic domain replication using the free-field FMM kernel. The novel algorithm provides computational savings of nearly 240 times for double-precision simulations with one million particles when compared to the direct calculation of the Biot-Savart law.
id UNSP_e7a1ade90e86569b4b437e2c1c0d5937
oai_identifier_str oai:repositorio.unesp.br:11449/159889
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A fast algorithm for simulation of periodic flows using discrete vortex particlesFast algorithmCotangent kernelPeriodic boundary conditionsDiscrete vortex methodFast multipole methodWe present a novel fast algorithm for flow simulations using the discrete vortex method, DVM, for problems with periodic boundary conditions. In the DVM, the solution of the velocity field induced by interactions among N discrete vortex particles is governed by the Biot-Savart law and, therefore, leads to a computational cost proportional to O(). The proposed algorithm combines exponential and power series expansions implemented using a divide and conquer strategy to accelerate the calculation of the cotangent kernel that models periodic boundary conditions. The fast multipole method, FMM, is applied for the solution of singular terms appearing in the power series expansion and also for the exponential series expansion. Error and computational cost analyses are performed for the individual steps of the algorithm for double and quadruple machine precision. The current method presents more accurate solutions when compared to those obtained by periodic domain replication using the free-field FMM kernel. The novel algorithm provides computational savings of nearly 240 times for double-precision simulations with one million particles when compared to the direct calculation of the Biot-Savart law.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CENAPAD-SPCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Campinas, BR-13083860 Campinas, SP, BrazilSao Paulo State Univ, BR-12516410 Guaratingueta, SP, BrazilSao Paulo State Univ, BR-12516410 Guaratingueta, SP, BrazilFAPESP: 2013/03413-4FAPESP: 2013/07375-0CNPq: 470695/2013-7CNPq: 305277/2015-4CENAPAD-SP: 551SpringerUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Ricciardi, Tulio R.Wolf, William R.Bimbato, Alex M. [UNESP]2018-11-26T15:45:37Z2018-11-26T15:45:37Z2017-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4555-4570application/pdfhttp://dx.doi.org/10.1007/s40430-017-0902-xJournal Of The Brazilian Society Of Mechanical Sciences And Engineering. Heidelberg: Springer Heidelberg, v. 39, n. 11, p. 4555-4570, 2017.1678-5878http://hdl.handle.net/11449/15988910.1007/s40430-017-0902-xWOS:000413699400022WOS000413699400022.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of The Brazilian Society Of Mechanical Sciences And Engineering0,362info:eu-repo/semantics/openAccess2023-11-12T06:15:56Zoai:repositorio.unesp.br:11449/159889Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:31:12.436787Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A fast algorithm for simulation of periodic flows using discrete vortex particles
title A fast algorithm for simulation of periodic flows using discrete vortex particles
spellingShingle A fast algorithm for simulation of periodic flows using discrete vortex particles
Ricciardi, Tulio R.
Fast algorithm
Cotangent kernel
Periodic boundary conditions
Discrete vortex method
Fast multipole method
title_short A fast algorithm for simulation of periodic flows using discrete vortex particles
title_full A fast algorithm for simulation of periodic flows using discrete vortex particles
title_fullStr A fast algorithm for simulation of periodic flows using discrete vortex particles
title_full_unstemmed A fast algorithm for simulation of periodic flows using discrete vortex particles
title_sort A fast algorithm for simulation of periodic flows using discrete vortex particles
author Ricciardi, Tulio R.
author_facet Ricciardi, Tulio R.
Wolf, William R.
Bimbato, Alex M. [UNESP]
author_role author
author2 Wolf, William R.
Bimbato, Alex M. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ricciardi, Tulio R.
Wolf, William R.
Bimbato, Alex M. [UNESP]
dc.subject.por.fl_str_mv Fast algorithm
Cotangent kernel
Periodic boundary conditions
Discrete vortex method
Fast multipole method
topic Fast algorithm
Cotangent kernel
Periodic boundary conditions
Discrete vortex method
Fast multipole method
description We present a novel fast algorithm for flow simulations using the discrete vortex method, DVM, for problems with periodic boundary conditions. In the DVM, the solution of the velocity field induced by interactions among N discrete vortex particles is governed by the Biot-Savart law and, therefore, leads to a computational cost proportional to O(). The proposed algorithm combines exponential and power series expansions implemented using a divide and conquer strategy to accelerate the calculation of the cotangent kernel that models periodic boundary conditions. The fast multipole method, FMM, is applied for the solution of singular terms appearing in the power series expansion and also for the exponential series expansion. Error and computational cost analyses are performed for the individual steps of the algorithm for double and quadruple machine precision. The current method presents more accurate solutions when compared to those obtained by periodic domain replication using the free-field FMM kernel. The novel algorithm provides computational savings of nearly 240 times for double-precision simulations with one million particles when compared to the direct calculation of the Biot-Savart law.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-01
2018-11-26T15:45:37Z
2018-11-26T15:45:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40430-017-0902-x
Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. Heidelberg: Springer Heidelberg, v. 39, n. 11, p. 4555-4570, 2017.
1678-5878
http://hdl.handle.net/11449/159889
10.1007/s40430-017-0902-x
WOS:000413699400022
WOS000413699400022.pdf
url http://dx.doi.org/10.1007/s40430-017-0902-x
http://hdl.handle.net/11449/159889
identifier_str_mv Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. Heidelberg: Springer Heidelberg, v. 39, n. 11, p. 4555-4570, 2017.
1678-5878
10.1007/s40430-017-0902-x
WOS:000413699400022
WOS000413699400022.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal Of The Brazilian Society Of Mechanical Sciences And Engineering
0,362
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4555-4570
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128821658910720