A fast algorithm for simulation of periodic flows using discrete vortex particles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s40430-017-0902-x http://hdl.handle.net/11449/159889 |
Resumo: | We present a novel fast algorithm for flow simulations using the discrete vortex method, DVM, for problems with periodic boundary conditions. In the DVM, the solution of the velocity field induced by interactions among N discrete vortex particles is governed by the Biot-Savart law and, therefore, leads to a computational cost proportional to O(). The proposed algorithm combines exponential and power series expansions implemented using a divide and conquer strategy to accelerate the calculation of the cotangent kernel that models periodic boundary conditions. The fast multipole method, FMM, is applied for the solution of singular terms appearing in the power series expansion and also for the exponential series expansion. Error and computational cost analyses are performed for the individual steps of the algorithm for double and quadruple machine precision. The current method presents more accurate solutions when compared to those obtained by periodic domain replication using the free-field FMM kernel. The novel algorithm provides computational savings of nearly 240 times for double-precision simulations with one million particles when compared to the direct calculation of the Biot-Savart law. |
id |
UNSP_e7a1ade90e86569b4b437e2c1c0d5937 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/159889 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A fast algorithm for simulation of periodic flows using discrete vortex particlesFast algorithmCotangent kernelPeriodic boundary conditionsDiscrete vortex methodFast multipole methodWe present a novel fast algorithm for flow simulations using the discrete vortex method, DVM, for problems with periodic boundary conditions. In the DVM, the solution of the velocity field induced by interactions among N discrete vortex particles is governed by the Biot-Savart law and, therefore, leads to a computational cost proportional to O(). The proposed algorithm combines exponential and power series expansions implemented using a divide and conquer strategy to accelerate the calculation of the cotangent kernel that models periodic boundary conditions. The fast multipole method, FMM, is applied for the solution of singular terms appearing in the power series expansion and also for the exponential series expansion. Error and computational cost analyses are performed for the individual steps of the algorithm for double and quadruple machine precision. The current method presents more accurate solutions when compared to those obtained by periodic domain replication using the free-field FMM kernel. The novel algorithm provides computational savings of nearly 240 times for double-precision simulations with one million particles when compared to the direct calculation of the Biot-Savart law.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CENAPAD-SPCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Campinas, BR-13083860 Campinas, SP, BrazilSao Paulo State Univ, BR-12516410 Guaratingueta, SP, BrazilSao Paulo State Univ, BR-12516410 Guaratingueta, SP, BrazilFAPESP: 2013/03413-4FAPESP: 2013/07375-0CNPq: 470695/2013-7CNPq: 305277/2015-4CENAPAD-SP: 551SpringerUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Ricciardi, Tulio R.Wolf, William R.Bimbato, Alex M. [UNESP]2018-11-26T15:45:37Z2018-11-26T15:45:37Z2017-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4555-4570application/pdfhttp://dx.doi.org/10.1007/s40430-017-0902-xJournal Of The Brazilian Society Of Mechanical Sciences And Engineering. Heidelberg: Springer Heidelberg, v. 39, n. 11, p. 4555-4570, 2017.1678-5878http://hdl.handle.net/11449/15988910.1007/s40430-017-0902-xWOS:000413699400022WOS000413699400022.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of The Brazilian Society Of Mechanical Sciences And Engineering0,362info:eu-repo/semantics/openAccess2023-11-12T06:15:56Zoai:repositorio.unesp.br:11449/159889Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:31:12.436787Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A fast algorithm for simulation of periodic flows using discrete vortex particles |
title |
A fast algorithm for simulation of periodic flows using discrete vortex particles |
spellingShingle |
A fast algorithm for simulation of periodic flows using discrete vortex particles Ricciardi, Tulio R. Fast algorithm Cotangent kernel Periodic boundary conditions Discrete vortex method Fast multipole method |
title_short |
A fast algorithm for simulation of periodic flows using discrete vortex particles |
title_full |
A fast algorithm for simulation of periodic flows using discrete vortex particles |
title_fullStr |
A fast algorithm for simulation of periodic flows using discrete vortex particles |
title_full_unstemmed |
A fast algorithm for simulation of periodic flows using discrete vortex particles |
title_sort |
A fast algorithm for simulation of periodic flows using discrete vortex particles |
author |
Ricciardi, Tulio R. |
author_facet |
Ricciardi, Tulio R. Wolf, William R. Bimbato, Alex M. [UNESP] |
author_role |
author |
author2 |
Wolf, William R. Bimbato, Alex M. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Ricciardi, Tulio R. Wolf, William R. Bimbato, Alex M. [UNESP] |
dc.subject.por.fl_str_mv |
Fast algorithm Cotangent kernel Periodic boundary conditions Discrete vortex method Fast multipole method |
topic |
Fast algorithm Cotangent kernel Periodic boundary conditions Discrete vortex method Fast multipole method |
description |
We present a novel fast algorithm for flow simulations using the discrete vortex method, DVM, for problems with periodic boundary conditions. In the DVM, the solution of the velocity field induced by interactions among N discrete vortex particles is governed by the Biot-Savart law and, therefore, leads to a computational cost proportional to O(). The proposed algorithm combines exponential and power series expansions implemented using a divide and conquer strategy to accelerate the calculation of the cotangent kernel that models periodic boundary conditions. The fast multipole method, FMM, is applied for the solution of singular terms appearing in the power series expansion and also for the exponential series expansion. Error and computational cost analyses are performed for the individual steps of the algorithm for double and quadruple machine precision. The current method presents more accurate solutions when compared to those obtained by periodic domain replication using the free-field FMM kernel. The novel algorithm provides computational savings of nearly 240 times for double-precision simulations with one million particles when compared to the direct calculation of the Biot-Savart law. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-01 2018-11-26T15:45:37Z 2018-11-26T15:45:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40430-017-0902-x Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. Heidelberg: Springer Heidelberg, v. 39, n. 11, p. 4555-4570, 2017. 1678-5878 http://hdl.handle.net/11449/159889 10.1007/s40430-017-0902-x WOS:000413699400022 WOS000413699400022.pdf |
url |
http://dx.doi.org/10.1007/s40430-017-0902-x http://hdl.handle.net/11449/159889 |
identifier_str_mv |
Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. Heidelberg: Springer Heidelberg, v. 39, n. 11, p. 4555-4570, 2017. 1678-5878 10.1007/s40430-017-0902-x WOS:000413699400022 WOS000413699400022.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal Of The Brazilian Society Of Mechanical Sciences And Engineering 0,362 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
4555-4570 application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128821658910720 |