Estudo dos problemas de corte e empacotamento
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/111135 |
Resumo: | In this work we study the cutting and packing problems with practical constraints that represent real world scenarios of the industry. The cutting problem consists in to cut a set of pieces from an object, and the packing problem consists in to pack a set of items in an object. In the real world there are a big number of variations of this problem. In this study we only carry out the problems where the pieces and the objects have a regular shape, bounding of that way the two-dimensional problems to use just rectangular items and the three-dimensional problems to use just parallelepiped pieces. Specifically, the cutting problems studied in this work are: the Two-Dimensional Single Knapsack Problem, taking into account cutting pattern constraints (guillotine and non-guillotine patterns), orientation of the pieces constraints, associated costs to the pieces constraints and demanding types of pieces constraints. The second problem that we work on is the Two-Dimensional Single Bin Size Packing Problem, taking into account cutting pattern constraints (only guillotine patterns) and orientation pieces constraints. The last problem is the Container Loading Problem (Three- Dimensional Single Large Object Placement Problem) taking into account: orientation box constraints, load-bearing strength constraints, cargo stability constraints (full support) and multi-drop constraints. All the previous problems have a big spectrum of application on the Industry, because of this; there is a big amount of previous work on it. Different methodologies, exact and approximate algorithms have been proposed as solution strategies. Due to the mathematical and computational complexity of these problems, the exact algorithms cannot solve real world instances of the problem. The approach of this study consists on presenting and/or adapting different encodings and optimization algorithms. Among the proposed approach solutions is ... |
id |
UNSP_ea1cd14b1b4462839ab07bfcfdf81909 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/111135 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Estudo dos problemas de corte e empacotamentoProblema do corte de estoquePesquisa operacionalTransporte por containersContainersEmbalagensOperations researchIn this work we study the cutting and packing problems with practical constraints that represent real world scenarios of the industry. The cutting problem consists in to cut a set of pieces from an object, and the packing problem consists in to pack a set of items in an object. In the real world there are a big number of variations of this problem. In this study we only carry out the problems where the pieces and the objects have a regular shape, bounding of that way the two-dimensional problems to use just rectangular items and the three-dimensional problems to use just parallelepiped pieces. Specifically, the cutting problems studied in this work are: the Two-Dimensional Single Knapsack Problem, taking into account cutting pattern constraints (guillotine and non-guillotine patterns), orientation of the pieces constraints, associated costs to the pieces constraints and demanding types of pieces constraints. The second problem that we work on is the Two-Dimensional Single Bin Size Packing Problem, taking into account cutting pattern constraints (only guillotine patterns) and orientation pieces constraints. The last problem is the Container Loading Problem (Three- Dimensional Single Large Object Placement Problem) taking into account: orientation box constraints, load-bearing strength constraints, cargo stability constraints (full support) and multi-drop constraints. All the previous problems have a big spectrum of application on the Industry, because of this; there is a big amount of previous work on it. Different methodologies, exact and approximate algorithms have been proposed as solution strategies. Due to the mathematical and computational complexity of these problems, the exact algorithms cannot solve real world instances of the problem. The approach of this study consists on presenting and/or adapting different encodings and optimization algorithms. Among the proposed approach solutions is ...O presente trabalho propõe uma análise sobre os problemas de corte e empacotamento com restrições práticas que representam cenários reais na indústria. Em síntese o problema de corte consiste em cortar um conjunto de peças de um determinado objeto, e o problema de empacotamento consiste em alocar um conjunto de peças dentro de um objeto. No mundo real se apresenta uma grande quantidade de variações destes problemas. Neste estudo limitamo-nos a estudar os problemas com peças e objetos com formas regulares, restringindo assim os problemas de duas dimensões ao uso de retângulos e aos problemas de três dimensões ao uso de paralelepípedos. De forma específica os problemas de corte estudados neste trabalho são o problema da mochila bidimensional (2D-SLOPP, do inglês Two-Dimensional Single Large Object Placement Problem) com restrições de padrão de corte; valores associados às peças; limites de exemplares por peça e orientação das peças. O segundo problema a ser estudado, é o problema da embalagem (2D-SBSBPP, do inglês Two-Dimensional Single Bin Size Bin Packing Problem) com restrições de padrões de corte tipo guilhotina e restrições de orientação das peças. Finalmente, o problema de empacotamento estudado no presente trabalho é o problema do carregamento de um único contêiner (3D-SKP ou 3D-SLOPP, do inglês Three-Dimensional Single Knapsack Problem e Three-Dimensional Single Large Object Placement Problem, respectivamente) com restrições de orientação das caixas; limites de resistência das caixas ao empilhamento; limite de peso do carregamento suportado pelo contêiner; estabilidade do padrão de carregamento e carga divida em múltiplos destinos. Estes três problemas apresentados são de grande interesse para a indústria, graças a isto, atualmente existe uma ampla literatura especializada de trabalhos referentes a esta temática. Logo, diferentes tipos de ...Universidade Estadual Paulista (Unesp)Lazaro, Ruben Augusto Romero [UNESP]Universidade Estadual Paulista (Unesp)Alvarez Martinez, David [UNESP]2014-12-02T11:16:56Z2014-12-02T11:16:56Z2014-05-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis161 f. : il.application/pdfALVAREZ MARTINEZ, David. Estudo dos problemas de corte e empacotamento. 2014. 161 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho. Faculdade de Engenharia de Ilha Solteira, 2014.http://hdl.handle.net/11449/111135000796058000796058.pdf33004099080P073033007471842650000-0002-7744-254XAlephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-08-05T17:59:28Zoai:repositorio.unesp.br:11449/111135Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:59:28Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Estudo dos problemas de corte e empacotamento |
title |
Estudo dos problemas de corte e empacotamento |
spellingShingle |
Estudo dos problemas de corte e empacotamento Alvarez Martinez, David [UNESP] Problema do corte de estoque Pesquisa operacional Transporte por containers Containers Embalagens Operations research |
title_short |
Estudo dos problemas de corte e empacotamento |
title_full |
Estudo dos problemas de corte e empacotamento |
title_fullStr |
Estudo dos problemas de corte e empacotamento |
title_full_unstemmed |
Estudo dos problemas de corte e empacotamento |
title_sort |
Estudo dos problemas de corte e empacotamento |
author |
Alvarez Martinez, David [UNESP] |
author_facet |
Alvarez Martinez, David [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lazaro, Ruben Augusto Romero [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Alvarez Martinez, David [UNESP] |
dc.subject.por.fl_str_mv |
Problema do corte de estoque Pesquisa operacional Transporte por containers Containers Embalagens Operations research |
topic |
Problema do corte de estoque Pesquisa operacional Transporte por containers Containers Embalagens Operations research |
description |
In this work we study the cutting and packing problems with practical constraints that represent real world scenarios of the industry. The cutting problem consists in to cut a set of pieces from an object, and the packing problem consists in to pack a set of items in an object. In the real world there are a big number of variations of this problem. In this study we only carry out the problems where the pieces and the objects have a regular shape, bounding of that way the two-dimensional problems to use just rectangular items and the three-dimensional problems to use just parallelepiped pieces. Specifically, the cutting problems studied in this work are: the Two-Dimensional Single Knapsack Problem, taking into account cutting pattern constraints (guillotine and non-guillotine patterns), orientation of the pieces constraints, associated costs to the pieces constraints and demanding types of pieces constraints. The second problem that we work on is the Two-Dimensional Single Bin Size Packing Problem, taking into account cutting pattern constraints (only guillotine patterns) and orientation pieces constraints. The last problem is the Container Loading Problem (Three- Dimensional Single Large Object Placement Problem) taking into account: orientation box constraints, load-bearing strength constraints, cargo stability constraints (full support) and multi-drop constraints. All the previous problems have a big spectrum of application on the Industry, because of this; there is a big amount of previous work on it. Different methodologies, exact and approximate algorithms have been proposed as solution strategies. Due to the mathematical and computational complexity of these problems, the exact algorithms cannot solve real world instances of the problem. The approach of this study consists on presenting and/or adapting different encodings and optimization algorithms. Among the proposed approach solutions is ... |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-02T11:16:56Z 2014-12-02T11:16:56Z 2014-05-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ALVAREZ MARTINEZ, David. Estudo dos problemas de corte e empacotamento. 2014. 161 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho. Faculdade de Engenharia de Ilha Solteira, 2014. http://hdl.handle.net/11449/111135 000796058 000796058.pdf 33004099080P0 7303300747184265 0000-0002-7744-254X |
identifier_str_mv |
ALVAREZ MARTINEZ, David. Estudo dos problemas de corte e empacotamento. 2014. 161 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho. Faculdade de Engenharia de Ilha Solteira, 2014. 000796058 000796058.pdf 33004099080P0 7303300747184265 0000-0002-7744-254X |
url |
http://hdl.handle.net/11449/111135 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
161 f. : il. application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
Aleph reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128208403431424 |