Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TLA.2015.7387220 http://hdl.handle.net/11449/177910 |
Resumo: | The use of Birnbaum-Saunders distribution can be a good alternative for analyzing data lifetime of equipment. In this work two different prior distributions are used in the estimation of the parameters of the Birnbaum-Saunders distribution under the Bayesian approach and with the presence of type I and II censored data. Assuming a priori dependence between parameters, an alternative prior distribution based on copula functions is proposed. Thus, a study to determine whether the priors lead to the same inference a posteriori is of great practical interest. Two examples are presented to illustrate the proposed methodology and investigated the performance of prior distributions. The Bayesian analysis is performed based on Monte Carlo Markov Chain (MCMC) to generate samples from the posterior distribution. |
id |
UNSP_ece895c23799c47af26a1e7ef6aaac7a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/177910 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored dataBirnbaum-Saunders DistributioncopulaMCMCType I censoringtype IIThe use of Birnbaum-Saunders distribution can be a good alternative for analyzing data lifetime of equipment. In this work two different prior distributions are used in the estimation of the parameters of the Birnbaum-Saunders distribution under the Bayesian approach and with the presence of type I and II censored data. Assuming a priori dependence between parameters, an alternative prior distribution based on copula functions is proposed. Thus, a study to determine whether the priors lead to the same inference a posteriori is of great practical interest. Two examples are presented to illustrate the proposed methodology and investigated the performance of prior distributions. The Bayesian analysis is performed based on Monte Carlo Markov Chain (MCMC) to generate samples from the posterior distribution.UNESP Faculdade de Ciências e TecnologiaUSP Faculdade de MedicinaUNESP Faculdade de Ciências e TecnologiaUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Moala, Fernando Antonio [UNESP]Achcar, Jorge AlbertoGimenez, Robson [UNESP]2018-12-11T17:27:39Z2018-12-11T17:27:39Z2015-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3187-3192application/pdfhttp://dx.doi.org/10.1109/TLA.2015.7387220IEEE Latin America Transactions, v. 13, n. 10, p. 3187-3192, 2015.1548-0992http://hdl.handle.net/11449/17791010.1109/TLA.2015.73872202-s2.0-849619091882-s2.0-84961909188.pdf16212695523666970000-0002-2445-0407Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactions0,253info:eu-repo/semantics/openAccess2024-06-18T18:17:50Zoai:repositorio.unesp.br:11449/177910Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:26:07.634901Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data |
title |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data |
spellingShingle |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data Moala, Fernando Antonio [UNESP] Birnbaum-Saunders Distribution copula MCMC Type I censoring type II |
title_short |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data |
title_full |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data |
title_fullStr |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data |
title_full_unstemmed |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data |
title_sort |
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data |
author |
Moala, Fernando Antonio [UNESP] |
author_facet |
Moala, Fernando Antonio [UNESP] Achcar, Jorge Alberto Gimenez, Robson [UNESP] |
author_role |
author |
author2 |
Achcar, Jorge Alberto Gimenez, Robson [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Moala, Fernando Antonio [UNESP] Achcar, Jorge Alberto Gimenez, Robson [UNESP] |
dc.subject.por.fl_str_mv |
Birnbaum-Saunders Distribution copula MCMC Type I censoring type II |
topic |
Birnbaum-Saunders Distribution copula MCMC Type I censoring type II |
description |
The use of Birnbaum-Saunders distribution can be a good alternative for analyzing data lifetime of equipment. In this work two different prior distributions are used in the estimation of the parameters of the Birnbaum-Saunders distribution under the Bayesian approach and with the presence of type I and II censored data. Assuming a priori dependence between parameters, an alternative prior distribution based on copula functions is proposed. Thus, a study to determine whether the priors lead to the same inference a posteriori is of great practical interest. Two examples are presented to illustrate the proposed methodology and investigated the performance of prior distributions. The Bayesian analysis is performed based on Monte Carlo Markov Chain (MCMC) to generate samples from the posterior distribution. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10-01 2018-12-11T17:27:39Z 2018-12-11T17:27:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TLA.2015.7387220 IEEE Latin America Transactions, v. 13, n. 10, p. 3187-3192, 2015. 1548-0992 http://hdl.handle.net/11449/177910 10.1109/TLA.2015.7387220 2-s2.0-84961909188 2-s2.0-84961909188.pdf 1621269552366697 0000-0002-2445-0407 |
url |
http://dx.doi.org/10.1109/TLA.2015.7387220 http://hdl.handle.net/11449/177910 |
identifier_str_mv |
IEEE Latin America Transactions, v. 13, n. 10, p. 3187-3192, 2015. 1548-0992 10.1109/TLA.2015.7387220 2-s2.0-84961909188 2-s2.0-84961909188.pdf 1621269552366697 0000-0002-2445-0407 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
IEEE Latin America Transactions 0,253 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3187-3192 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128359469678592 |