Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data

Detalhes bibliográficos
Autor(a) principal: Moala, Fernando Antonio [UNESP]
Data de Publicação: 2015
Outros Autores: Achcar, Jorge Alberto, Gimenez, Robson [UNESP]
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TLA.2015.7387220
http://hdl.handle.net/11449/177910
Resumo: The use of Birnbaum-Saunders distribution can be a good alternative for analyzing data lifetime of equipment. In this work two different prior distributions are used in the estimation of the parameters of the Birnbaum-Saunders distribution under the Bayesian approach and with the presence of type I and II censored data. Assuming a priori dependence between parameters, an alternative prior distribution based on copula functions is proposed. Thus, a study to determine whether the priors lead to the same inference a posteriori is of great practical interest. Two examples are presented to illustrate the proposed methodology and investigated the performance of prior distributions. The Bayesian analysis is performed based on Monte Carlo Markov Chain (MCMC) to generate samples from the posterior distribution.
id UNSP_ece895c23799c47af26a1e7ef6aaac7a
oai_identifier_str oai:repositorio.unesp.br:11449/177910
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored dataBirnbaum-Saunders DistributioncopulaMCMCType I censoringtype IIThe use of Birnbaum-Saunders distribution can be a good alternative for analyzing data lifetime of equipment. In this work two different prior distributions are used in the estimation of the parameters of the Birnbaum-Saunders distribution under the Bayesian approach and with the presence of type I and II censored data. Assuming a priori dependence between parameters, an alternative prior distribution based on copula functions is proposed. Thus, a study to determine whether the priors lead to the same inference a posteriori is of great practical interest. Two examples are presented to illustrate the proposed methodology and investigated the performance of prior distributions. The Bayesian analysis is performed based on Monte Carlo Markov Chain (MCMC) to generate samples from the posterior distribution.UNESP Faculdade de Ciências e TecnologiaUSP Faculdade de MedicinaUNESP Faculdade de Ciências e TecnologiaUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Moala, Fernando Antonio [UNESP]Achcar, Jorge AlbertoGimenez, Robson [UNESP]2018-12-11T17:27:39Z2018-12-11T17:27:39Z2015-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3187-3192application/pdfhttp://dx.doi.org/10.1109/TLA.2015.7387220IEEE Latin America Transactions, v. 13, n. 10, p. 3187-3192, 2015.1548-0992http://hdl.handle.net/11449/17791010.1109/TLA.2015.73872202-s2.0-849619091882-s2.0-84961909188.pdf16212695523666970000-0002-2445-0407Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactions0,253info:eu-repo/semantics/openAccess2024-06-18T18:17:50Zoai:repositorio.unesp.br:11449/177910Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:26:07.634901Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
title Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
spellingShingle Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
Moala, Fernando Antonio [UNESP]
Birnbaum-Saunders Distribution
copula
MCMC
Type I censoring
type II
title_short Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
title_full Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
title_fullStr Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
title_full_unstemmed Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
title_sort Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
author Moala, Fernando Antonio [UNESP]
author_facet Moala, Fernando Antonio [UNESP]
Achcar, Jorge Alberto
Gimenez, Robson [UNESP]
author_role author
author2 Achcar, Jorge Alberto
Gimenez, Robson [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Moala, Fernando Antonio [UNESP]
Achcar, Jorge Alberto
Gimenez, Robson [UNESP]
dc.subject.por.fl_str_mv Birnbaum-Saunders Distribution
copula
MCMC
Type I censoring
type II
topic Birnbaum-Saunders Distribution
copula
MCMC
Type I censoring
type II
description The use of Birnbaum-Saunders distribution can be a good alternative for analyzing data lifetime of equipment. In this work two different prior distributions are used in the estimation of the parameters of the Birnbaum-Saunders distribution under the Bayesian approach and with the presence of type I and II censored data. Assuming a priori dependence between parameters, an alternative prior distribution based on copula functions is proposed. Thus, a study to determine whether the priors lead to the same inference a posteriori is of great practical interest. Two examples are presented to illustrate the proposed methodology and investigated the performance of prior distributions. The Bayesian analysis is performed based on Monte Carlo Markov Chain (MCMC) to generate samples from the posterior distribution.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-01
2018-12-11T17:27:39Z
2018-12-11T17:27:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TLA.2015.7387220
IEEE Latin America Transactions, v. 13, n. 10, p. 3187-3192, 2015.
1548-0992
http://hdl.handle.net/11449/177910
10.1109/TLA.2015.7387220
2-s2.0-84961909188
2-s2.0-84961909188.pdf
1621269552366697
0000-0002-2445-0407
url http://dx.doi.org/10.1109/TLA.2015.7387220
http://hdl.handle.net/11449/177910
identifier_str_mv IEEE Latin America Transactions, v. 13, n. 10, p. 3187-3192, 2015.
1548-0992
10.1109/TLA.2015.7387220
2-s2.0-84961909188
2-s2.0-84961909188.pdf
1621269552366697
0000-0002-2445-0407
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv IEEE Latin America Transactions
0,253
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 3187-3192
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128359469678592