On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
Autor(a) principal: | |
---|---|
Data de Publicação: | 1983 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1088/0305-4470/16/13/015 http://hdl.handle.net/11449/230934 |
Resumo: | The energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Pade-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a box-corroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series. |
id |
UNSP_ed488c27be7fae04674c45ecf1118980 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/230934 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxesThe energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Pade-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a box-corroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series.Inst. de Fisica Teorica, Sao PauloInst. de Fisica TeoricaAguilera-Navarro, V. C.Gomes, J. F.Zimerman, A. H.Ley Koo, K.2022-04-29T08:42:48Z2022-04-29T08:42:48Z1983-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2943-2952http://dx.doi.org/10.1088/0305-4470/16/13/015Journal of Physics A: Mathematical and General, v. 16, n. 13, p. 2943-2952, 1983.0305-4470http://hdl.handle.net/11449/23093410.1088/0305-4470/16/13/0152-s2.0-0039346507Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Physics A: Mathematical and Generalinfo:eu-repo/semantics/openAccess2022-04-29T08:42:48Zoai:repositorio.unesp.br:11449/230934Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:26:05.222516Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes |
title |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes |
spellingShingle |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes Aguilera-Navarro, V. C. |
title_short |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes |
title_full |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes |
title_fullStr |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes |
title_full_unstemmed |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes |
title_sort |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes |
author |
Aguilera-Navarro, V. C. |
author_facet |
Aguilera-Navarro, V. C. Gomes, J. F. Zimerman, A. H. Ley Koo, K. |
author_role |
author |
author2 |
Gomes, J. F. Zimerman, A. H. Ley Koo, K. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Inst. de Fisica Teorica |
dc.contributor.author.fl_str_mv |
Aguilera-Navarro, V. C. Gomes, J. F. Zimerman, A. H. Ley Koo, K. |
description |
The energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Pade-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a box-corroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series. |
publishDate |
1983 |
dc.date.none.fl_str_mv |
1983-12-01 2022-04-29T08:42:48Z 2022-04-29T08:42:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/0305-4470/16/13/015 Journal of Physics A: Mathematical and General, v. 16, n. 13, p. 2943-2952, 1983. 0305-4470 http://hdl.handle.net/11449/230934 10.1088/0305-4470/16/13/015 2-s2.0-0039346507 |
url |
http://dx.doi.org/10.1088/0305-4470/16/13/015 http://hdl.handle.net/11449/230934 |
identifier_str_mv |
Journal of Physics A: Mathematical and General, v. 16, n. 13, p. 2943-2952, 1983. 0305-4470 10.1088/0305-4470/16/13/015 2-s2.0-0039346507 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Physics A: Mathematical and General |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2943-2952 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129201245519872 |