On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes

Detalhes bibliográficos
Autor(a) principal: Aguilera-Navarro, V. C.
Data de Publicação: 1983
Outros Autores: Gomes, J. F., Zimerman, A. H., Ley Koo, K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/0305-4470/16/13/015
http://hdl.handle.net/11449/230934
Resumo: The energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Pade-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a box-corroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series.
id UNSP_ed488c27be7fae04674c45ecf1118980
oai_identifier_str oai:repositorio.unesp.br:11449/230934
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxesThe energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Pade-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a box-corroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series.Inst. de Fisica Teorica, Sao PauloInst. de Fisica TeoricaAguilera-Navarro, V. C.Gomes, J. F.Zimerman, A. H.Ley Koo, K.2022-04-29T08:42:48Z2022-04-29T08:42:48Z1983-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2943-2952http://dx.doi.org/10.1088/0305-4470/16/13/015Journal of Physics A: Mathematical and General, v. 16, n. 13, p. 2943-2952, 1983.0305-4470http://hdl.handle.net/11449/23093410.1088/0305-4470/16/13/0152-s2.0-0039346507Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Physics A: Mathematical and Generalinfo:eu-repo/semantics/openAccess2022-04-29T08:42:48Zoai:repositorio.unesp.br:11449/230934Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:26:05.222516Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
title On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
spellingShingle On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
Aguilera-Navarro, V. C.
title_short On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
title_full On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
title_fullStr On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
title_full_unstemmed On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
title_sort On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
author Aguilera-Navarro, V. C.
author_facet Aguilera-Navarro, V. C.
Gomes, J. F.
Zimerman, A. H.
Ley Koo, K.
author_role author
author2 Gomes, J. F.
Zimerman, A. H.
Ley Koo, K.
author2_role author
author
author
dc.contributor.none.fl_str_mv Inst. de Fisica Teorica
dc.contributor.author.fl_str_mv Aguilera-Navarro, V. C.
Gomes, J. F.
Zimerman, A. H.
Ley Koo, K.
description The energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Pade-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a box-corroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series.
publishDate 1983
dc.date.none.fl_str_mv 1983-12-01
2022-04-29T08:42:48Z
2022-04-29T08:42:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/0305-4470/16/13/015
Journal of Physics A: Mathematical and General, v. 16, n. 13, p. 2943-2952, 1983.
0305-4470
http://hdl.handle.net/11449/230934
10.1088/0305-4470/16/13/015
2-s2.0-0039346507
url http://dx.doi.org/10.1088/0305-4470/16/13/015
http://hdl.handle.net/11449/230934
identifier_str_mv Journal of Physics A: Mathematical and General, v. 16, n. 13, p. 2943-2952, 1983.
0305-4470
10.1088/0305-4470/16/13/015
2-s2.0-0039346507
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Physics A: Mathematical and General
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2943-2952
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129201245519872