Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers

Detalhes bibliográficos
Autor(a) principal: Pita Ruiz, Julián L.
Data de Publicação: 2022
Outros Autores: Rocha, Lucas G., Yang, Jun, Kocabaş, Şükrü Ekin, Li, Ming-Jun, Aldaya, Ivan, Ménard, Michaël, Dainese, Paulo, Gabrielli, Lucas H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acsphotonics.2c01008
http://hdl.handle.net/11449/246043
Resumo: Fiber-to-chip couplers are critical devices to support interconnections between fibers and photonic integrated circuits. The advent of spatial division multiplexing (SDM) systems based on multicore fibers makes these devices subject to increasingly demanding footprint and coupling requirements. In addition to size and efficiency requirements, the manufacturing constraints and large parameter space result in a challenging optimization problem. This article applies topology optimization to design three integrated couplers for multicore fibers with an intercore spacing of 32 μm. By individually optimizing the radiating and tapering regions, we design and experimentally demonstrate two devices: the first with perpendicular coupling and an efficiency of -3.8 dB, with a footprint of 15 μm × 10 μm, and the second with a 10° coupling angle and an efficiency of -2.9 dB, with a footprint of 20 μm × 10 μm. Furthermore, by applying topology optimization over the whole design region, we improved the simulated efficiency to -1.9 dB within a footprint of only 10 μm × 10 μm, which represent the most compact CMOS-compatible coupler to date with efficiency among the highest in class. These are the first devices that can enable direct coupling between silicon chips and multicore fibers with intercore separation below 25 μm.
id UNSP_ee137fd880e97927297304f08265c1d8
oai_identifier_str oai:repositorio.unesp.br:11449/246043
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Ultracompact Silicon-On-Insulator Couplers for Multicore Fibersintegrated photonicsmulticore fibersphotonic interconnectssilicon photonicstopological optimizationFiber-to-chip couplers are critical devices to support interconnections between fibers and photonic integrated circuits. The advent of spatial division multiplexing (SDM) systems based on multicore fibers makes these devices subject to increasingly demanding footprint and coupling requirements. In addition to size and efficiency requirements, the manufacturing constraints and large parameter space result in a challenging optimization problem. This article applies topology optimization to design three integrated couplers for multicore fibers with an intercore spacing of 32 μm. By individually optimizing the radiating and tapering regions, we design and experimentally demonstrate two devices: the first with perpendicular coupling and an efficiency of -3.8 dB, with a footprint of 15 μm × 10 μm, and the second with a 10° coupling angle and an efficiency of -2.9 dB, with a footprint of 20 μm × 10 μm. Furthermore, by applying topology optimization over the whole design region, we improved the simulated efficiency to -1.9 dB within a footprint of only 10 μm × 10 μm, which represent the most compact CMOS-compatible coupler to date with efficiency among the highest in class. These are the first devices that can enable direct coupling between silicon chips and multicore fibers with intercore separation below 25 μm.Department of Electrical Engineering École de Technologie Supérieure (ÉTS)School of Electrical and Computer Engineering University of Campinas, São PauloCorning Research and Development Corporation, One Science DriveCenter for Advanced and Sustainable Technologies State University of São Paulo, São PauloÉcole de Technologie Supérieure (ÉTS)Universidade Estadual de Campinas (UNICAMP)Corning Research and Development CorporationUniversidade de São Paulo (USP)Pita Ruiz, Julián L.Rocha, Lucas G.Yang, JunKocabaş, Şükrü EkinLi, Ming-JunAldaya, IvanMénard, MichaëlDainese, PauloGabrielli, Lucas H.2023-07-29T12:30:08Z2023-07-29T12:30:08Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1021/acsphotonics.2c01008ACS Photonics.2330-4022http://hdl.handle.net/11449/24604310.1021/acsphotonics.2c010082-s2.0-85139521916Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengACS Photonicsinfo:eu-repo/semantics/openAccess2023-07-29T12:30:08Zoai:repositorio.unesp.br:11449/246043Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:01:27.537210Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers
title Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers
spellingShingle Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers
Pita Ruiz, Julián L.
integrated photonics
multicore fibers
photonic interconnects
silicon photonics
topological optimization
title_short Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers
title_full Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers
title_fullStr Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers
title_full_unstemmed Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers
title_sort Ultracompact Silicon-On-Insulator Couplers for Multicore Fibers
author Pita Ruiz, Julián L.
author_facet Pita Ruiz, Julián L.
Rocha, Lucas G.
Yang, Jun
Kocabaş, Şükrü Ekin
Li, Ming-Jun
Aldaya, Ivan
Ménard, Michaël
Dainese, Paulo
Gabrielli, Lucas H.
author_role author
author2 Rocha, Lucas G.
Yang, Jun
Kocabaş, Şükrü Ekin
Li, Ming-Jun
Aldaya, Ivan
Ménard, Michaël
Dainese, Paulo
Gabrielli, Lucas H.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv École de Technologie Supérieure (ÉTS)
Universidade Estadual de Campinas (UNICAMP)
Corning Research and Development Corporation
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Pita Ruiz, Julián L.
Rocha, Lucas G.
Yang, Jun
Kocabaş, Şükrü Ekin
Li, Ming-Jun
Aldaya, Ivan
Ménard, Michaël
Dainese, Paulo
Gabrielli, Lucas H.
dc.subject.por.fl_str_mv integrated photonics
multicore fibers
photonic interconnects
silicon photonics
topological optimization
topic integrated photonics
multicore fibers
photonic interconnects
silicon photonics
topological optimization
description Fiber-to-chip couplers are critical devices to support interconnections between fibers and photonic integrated circuits. The advent of spatial division multiplexing (SDM) systems based on multicore fibers makes these devices subject to increasingly demanding footprint and coupling requirements. In addition to size and efficiency requirements, the manufacturing constraints and large parameter space result in a challenging optimization problem. This article applies topology optimization to design three integrated couplers for multicore fibers with an intercore spacing of 32 μm. By individually optimizing the radiating and tapering regions, we design and experimentally demonstrate two devices: the first with perpendicular coupling and an efficiency of -3.8 dB, with a footprint of 15 μm × 10 μm, and the second with a 10° coupling angle and an efficiency of -2.9 dB, with a footprint of 20 μm × 10 μm. Furthermore, by applying topology optimization over the whole design region, we improved the simulated efficiency to -1.9 dB within a footprint of only 10 μm × 10 μm, which represent the most compact CMOS-compatible coupler to date with efficiency among the highest in class. These are the first devices that can enable direct coupling between silicon chips and multicore fibers with intercore separation below 25 μm.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-07-29T12:30:08Z
2023-07-29T12:30:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acsphotonics.2c01008
ACS Photonics.
2330-4022
http://hdl.handle.net/11449/246043
10.1021/acsphotonics.2c01008
2-s2.0-85139521916
url http://dx.doi.org/10.1021/acsphotonics.2c01008
http://hdl.handle.net/11449/246043
identifier_str_mv ACS Photonics.
2330-4022
10.1021/acsphotonics.2c01008
2-s2.0-85139521916
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ACS Photonics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129150666407936