Classical fields on the null-plane
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/1806-9126-RBEF-2021-0200 http://hdl.handle.net/11449/229977 |
Resumo: | The description of the dynamics of the physical systems requires the specification of the evolution of the quantities that determine them in passing from one three-dimensional surface to the other, each one of them defined by the constant value of a parameter called «time». But such surfaces and such time can be chosen in different manners, as it was shown by Dirac in 1949; the inequivalent possible choices are called «dynamical forms». In this study we precisely define them, focusing in particular in the so-called «light-front dynamics» or «null-plane dynamics», in which the time is a coordinate defined on the light-cone. We study the classical free fields in this formulation: the scalar, fermion, electromagnetic and massive vector ones, establishing the solution to their initial-value problem (Goursat's problem), the classification of their components as dynamical and non-dynamical, and their polarization states. We finalize by highlighting the advantages and disadvantages of null-plane physics, hoping to provide a relevant initiation material to this promising, although generally unknown, area of physics |
id |
UNSP_f1398bda7a3c12e001691d277de8f62a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/229977 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Classical fields on the null-planeCampos clássicos no plano nuloClassical field theorydinâmica da frente de luzdinâmica do plano nulolight-front dynamicsnull-plane dynamicsTeoria clássica de camposThe description of the dynamics of the physical systems requires the specification of the evolution of the quantities that determine them in passing from one three-dimensional surface to the other, each one of them defined by the constant value of a parameter called «time». But such surfaces and such time can be chosen in different manners, as it was shown by Dirac in 1949; the inequivalent possible choices are called «dynamical forms». In this study we precisely define them, focusing in particular in the so-called «light-front dynamics» or «null-plane dynamics», in which the time is a coordinate defined on the light-cone. We study the classical free fields in this formulation: the scalar, fermion, electromagnetic and massive vector ones, establishing the solution to their initial-value problem (Goursat's problem), the classification of their components as dynamical and non-dynamical, and their polarization states. We finalize by highlighting the advantages and disadvantages of null-plane physics, hoping to provide a relevant initiation material to this promising, although generally unknown, area of physicsUniversidade Estadual Paulista Júlio de Mesquita Filho Instituto de Física TeóricaUniversidad de NarinoUniversidade Estadual Paulista Júlio de Mesquita Filho Instituto de Física TeóricaUniversidade Estadual Paulista (UNESP)Universidad de NarinoAcevedo, O. A. [UNESP]Gallo, K. P. [UNESP]Pimentel, B. M. [UNESP]Zambrano, G. E.R.2022-04-29T08:36:53Z2022-04-29T08:36:53Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-29http://dx.doi.org/10.1590/1806-9126-RBEF-2021-0200Revista Brasileira de Ensino de Fisica, v. 43, p. 1-29.0102-4744http://hdl.handle.net/11449/22997710.1590/1806-9126-RBEF-2021-02002-s2.0-85120303044Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengporRevista Brasileira de Ensino de Fisicainfo:eu-repo/semantics/openAccess2022-04-29T08:36:53Zoai:repositorio.unesp.br:11449/229977Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:06:00.057626Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Classical fields on the null-plane Campos clássicos no plano nulo |
title |
Classical fields on the null-plane |
spellingShingle |
Classical fields on the null-plane Acevedo, O. A. [UNESP] Classical field theory dinâmica da frente de luz dinâmica do plano nulo light-front dynamics null-plane dynamics Teoria clássica de campos |
title_short |
Classical fields on the null-plane |
title_full |
Classical fields on the null-plane |
title_fullStr |
Classical fields on the null-plane |
title_full_unstemmed |
Classical fields on the null-plane |
title_sort |
Classical fields on the null-plane |
author |
Acevedo, O. A. [UNESP] |
author_facet |
Acevedo, O. A. [UNESP] Gallo, K. P. [UNESP] Pimentel, B. M. [UNESP] Zambrano, G. E.R. |
author_role |
author |
author2 |
Gallo, K. P. [UNESP] Pimentel, B. M. [UNESP] Zambrano, G. E.R. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidad de Narino |
dc.contributor.author.fl_str_mv |
Acevedo, O. A. [UNESP] Gallo, K. P. [UNESP] Pimentel, B. M. [UNESP] Zambrano, G. E.R. |
dc.subject.por.fl_str_mv |
Classical field theory dinâmica da frente de luz dinâmica do plano nulo light-front dynamics null-plane dynamics Teoria clássica de campos |
topic |
Classical field theory dinâmica da frente de luz dinâmica do plano nulo light-front dynamics null-plane dynamics Teoria clássica de campos |
description |
The description of the dynamics of the physical systems requires the specification of the evolution of the quantities that determine them in passing from one three-dimensional surface to the other, each one of them defined by the constant value of a parameter called «time». But such surfaces and such time can be chosen in different manners, as it was shown by Dirac in 1949; the inequivalent possible choices are called «dynamical forms». In this study we precisely define them, focusing in particular in the so-called «light-front dynamics» or «null-plane dynamics», in which the time is a coordinate defined on the light-cone. We study the classical free fields in this formulation: the scalar, fermion, electromagnetic and massive vector ones, establishing the solution to their initial-value problem (Goursat's problem), the classification of their components as dynamical and non-dynamical, and their polarization states. We finalize by highlighting the advantages and disadvantages of null-plane physics, hoping to provide a relevant initiation material to this promising, although generally unknown, area of physics |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-04-29T08:36:53Z 2022-04-29T08:36:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/1806-9126-RBEF-2021-0200 Revista Brasileira de Ensino de Fisica, v. 43, p. 1-29. 0102-4744 http://hdl.handle.net/11449/229977 10.1590/1806-9126-RBEF-2021-0200 2-s2.0-85120303044 |
url |
http://dx.doi.org/10.1590/1806-9126-RBEF-2021-0200 http://hdl.handle.net/11449/229977 |
identifier_str_mv |
Revista Brasileira de Ensino de Fisica, v. 43, p. 1-29. 0102-4744 10.1590/1806-9126-RBEF-2021-0200 2-s2.0-85120303044 |
dc.language.iso.fl_str_mv |
eng por |
language |
eng por |
dc.relation.none.fl_str_mv |
Revista Brasileira de Ensino de Fisica |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1-29 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129160410824704 |