Campos clássicos no plano nulo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172021000100469 |
Resumo: | A descrição da dinâmica dos sistemas físicos requer o detalhamento da evolução das quantidades que os determinam ao passar de uma superfície tri-dimensional para outra, cada uma delas definida segundo o parâmetro de evolução a que é dado o nome de «tempo». Mas quais seriam essas superfícies e qual seria esse tempo é uma escolha não única, senão diversa, como foi mostrado por Dirac em 1949; tais diferentes escolhas possíveis inequivalentes se chamam «formas dinâmicas». No presente artigo expomos a definição precisa delas e colocamos o foco de atenção na assim chamada «forma dinâmica da frente de luz» ou do «plano nulo», em que o tempo é uma coordenada definida sobre o cone de luz. Estudamos os diversos campos clássicos livres nessa formulação: o escalar, o fermiônico, o eletromagnético e o vetorial massivo, estabelecendo a solução do problema dos valores iniciais (problema de Goursat), a distinção entre suas componentes dinâmicas e as não-dinâmicas, e seus estados de polarização. Finalizamos expondo cuidadosamente as virtudes e dificuldades da forma dinâmica do plano nulo, almejando assim fornecer um material de iniciação relevante a essa prometedora, porém pouco conhecida, área da física. |
id |
SBF-1_560ede7192929f39affe644aef16f9cb |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172021000100469 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Campos clássicos no plano nuloTeoria clássica de camposdinâmica da frente de luzdinâmica do plano nuloA descrição da dinâmica dos sistemas físicos requer o detalhamento da evolução das quantidades que os determinam ao passar de uma superfície tri-dimensional para outra, cada uma delas definida segundo o parâmetro de evolução a que é dado o nome de «tempo». Mas quais seriam essas superfícies e qual seria esse tempo é uma escolha não única, senão diversa, como foi mostrado por Dirac em 1949; tais diferentes escolhas possíveis inequivalentes se chamam «formas dinâmicas». No presente artigo expomos a definição precisa delas e colocamos o foco de atenção na assim chamada «forma dinâmica da frente de luz» ou do «plano nulo», em que o tempo é uma coordenada definida sobre o cone de luz. Estudamos os diversos campos clássicos livres nessa formulação: o escalar, o fermiônico, o eletromagnético e o vetorial massivo, estabelecendo a solução do problema dos valores iniciais (problema de Goursat), a distinção entre suas componentes dinâmicas e as não-dinâmicas, e seus estados de polarização. Finalizamos expondo cuidadosamente as virtudes e dificuldades da forma dinâmica do plano nulo, almejando assim fornecer um material de iniciação relevante a essa prometedora, porém pouco conhecida, área da física.Sociedade Brasileira de Física2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172021000100469Revista Brasileira de Ensino de Física v.43 2021reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2021-0200info:eu-repo/semantics/openAccessAcevedo,O.A.Gallo,K.P.Pimentel,B.M.Zambrano,G.E.R.por2021-08-06T00:00:00Zoai:scielo:S1806-11172021000100469Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2021-08-06T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Campos clássicos no plano nulo |
title |
Campos clássicos no plano nulo |
spellingShingle |
Campos clássicos no plano nulo Acevedo,O.A. Teoria clássica de campos dinâmica da frente de luz dinâmica do plano nulo |
title_short |
Campos clássicos no plano nulo |
title_full |
Campos clássicos no plano nulo |
title_fullStr |
Campos clássicos no plano nulo |
title_full_unstemmed |
Campos clássicos no plano nulo |
title_sort |
Campos clássicos no plano nulo |
author |
Acevedo,O.A. |
author_facet |
Acevedo,O.A. Gallo,K.P. Pimentel,B.M. Zambrano,G.E.R. |
author_role |
author |
author2 |
Gallo,K.P. Pimentel,B.M. Zambrano,G.E.R. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Acevedo,O.A. Gallo,K.P. Pimentel,B.M. Zambrano,G.E.R. |
dc.subject.por.fl_str_mv |
Teoria clássica de campos dinâmica da frente de luz dinâmica do plano nulo |
topic |
Teoria clássica de campos dinâmica da frente de luz dinâmica do plano nulo |
description |
A descrição da dinâmica dos sistemas físicos requer o detalhamento da evolução das quantidades que os determinam ao passar de uma superfície tri-dimensional para outra, cada uma delas definida segundo o parâmetro de evolução a que é dado o nome de «tempo». Mas quais seriam essas superfícies e qual seria esse tempo é uma escolha não única, senão diversa, como foi mostrado por Dirac em 1949; tais diferentes escolhas possíveis inequivalentes se chamam «formas dinâmicas». No presente artigo expomos a definição precisa delas e colocamos o foco de atenção na assim chamada «forma dinâmica da frente de luz» ou do «plano nulo», em que o tempo é uma coordenada definida sobre o cone de luz. Estudamos os diversos campos clássicos livres nessa formulação: o escalar, o fermiônico, o eletromagnético e o vetorial massivo, estabelecendo a solução do problema dos valores iniciais (problema de Goursat), a distinção entre suas componentes dinâmicas e as não-dinâmicas, e seus estados de polarização. Finalizamos expondo cuidadosamente as virtudes e dificuldades da forma dinâmica do plano nulo, almejando assim fornecer um material de iniciação relevante a essa prometedora, porém pouco conhecida, área da física. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172021000100469 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172021000100469 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2021-0200 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.43 2021 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122425511772160 |