Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems

Detalhes bibliográficos
Autor(a) principal: Bíscaro, A. A.P.
Data de Publicação: 2016
Outros Autores: Pereira, R. A.F. [UNESP], Kezunovic, M., Mantovani, J. R.S. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TPWRD.2015.2464098
http://hdl.handle.net/11449/172837
Resumo: This paper presents a methodology for automated disturbance analysis and fault location on electric power distribution systems using a combination of modern techniques for network analysis, signal processing, and intelligent systems. New algorithms to detect, classify, and locate power-quality disturbances are developed. The continuous process of detecting these disturbances is accomplished through statistical analysis and multilevel signal analysis in the wavelet domain. The behavioral indices of the current and voltage signals are extracted by employing the discrete wavelet transform, multiresolution analysis, and the concept of signal energy. These indices are used by a number of independent Fuzzy-ARTMAP neural networks, which aim to classify the fault type and the power-quality events. The fault location is performed after the classification process. A real life three-phase distribution system with 134 nodes - 13.8 kV and 7.065 MVA - was used to test the proposed algorithms, providing satisfactory results, attesting that the proposed algorithms are efficient, fast, and, above all, intelligent.
id UNSP_f6f212e0381a906041cf130b332bbcdb
oai_identifier_str oai:repositorio.unesp.br:11449/172837
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution SystemsFault locationneural networkspattern classificationpower distributionpower quality (PQ)wavelet transformsThis paper presents a methodology for automated disturbance analysis and fault location on electric power distribution systems using a combination of modern techniques for network analysis, signal processing, and intelligent systems. New algorithms to detect, classify, and locate power-quality disturbances are developed. The continuous process of detecting these disturbances is accomplished through statistical analysis and multilevel signal analysis in the wavelet domain. The behavioral indices of the current and voltage signals are extracted by employing the discrete wavelet transform, multiresolution analysis, and the concept of signal energy. These indices are used by a number of independent Fuzzy-ARTMAP neural networks, which aim to classify the fault type and the power-quality events. The fault location is performed after the classification process. A real life three-phase distribution system with 134 nodes - 13.8 kV and 7.065 MVA - was used to test the proposed algorithms, providing satisfactory results, attesting that the proposed algorithms are efficient, fast, and, above all, intelligent.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Do Estado de Mato Grosso - UNEMAT Departamento de Engenharia ElétricaFaculdade de Engenharia de Ilha Solteira UNESP - Univ. Estadual Paulista Departamento de Engenharia ElétricaDepartment of Electrical and Computer Engineering Texas AandM UniversityFaculdade de Engenharia de Ilha Solteira UNESP - Univ. Estadual Paulista Departamento de Engenharia ElétricaFAPESP: 13/23590-8Universidade Do Estado de Mato Grosso - UNEMATUniversidade Estadual Paulista (Unesp)Texas AandM UniversityBíscaro, A. A.P.Pereira, R. A.F. [UNESP]Kezunovic, M.Mantovani, J. R.S. [UNESP]2018-12-11T17:02:23Z2018-12-11T17:02:23Z2016-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article428-436application/pdfhttp://dx.doi.org/10.1109/TPWRD.2015.2464098IEEE Transactions on Power Delivery, v. 31, n. 2, p. 428-436, 2016.0885-8977http://hdl.handle.net/11449/17283710.1109/TPWRD.2015.24640982-s2.0-849637849592-s2.0-84963784959.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIEEE Transactions on Power Delivery1,814info:eu-repo/semantics/openAccess2024-07-04T19:06:03Zoai:repositorio.unesp.br:11449/172837Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:57:21.791248Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
title Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
spellingShingle Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
Bíscaro, A. A.P.
Fault location
neural networks
pattern classification
power distribution
power quality (PQ)
wavelet transforms
title_short Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
title_full Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
title_fullStr Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
title_full_unstemmed Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
title_sort Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
author Bíscaro, A. A.P.
author_facet Bíscaro, A. A.P.
Pereira, R. A.F. [UNESP]
Kezunovic, M.
Mantovani, J. R.S. [UNESP]
author_role author
author2 Pereira, R. A.F. [UNESP]
Kezunovic, M.
Mantovani, J. R.S. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Do Estado de Mato Grosso - UNEMAT
Universidade Estadual Paulista (Unesp)
Texas AandM University
dc.contributor.author.fl_str_mv Bíscaro, A. A.P.
Pereira, R. A.F. [UNESP]
Kezunovic, M.
Mantovani, J. R.S. [UNESP]
dc.subject.por.fl_str_mv Fault location
neural networks
pattern classification
power distribution
power quality (PQ)
wavelet transforms
topic Fault location
neural networks
pattern classification
power distribution
power quality (PQ)
wavelet transforms
description This paper presents a methodology for automated disturbance analysis and fault location on electric power distribution systems using a combination of modern techniques for network analysis, signal processing, and intelligent systems. New algorithms to detect, classify, and locate power-quality disturbances are developed. The continuous process of detecting these disturbances is accomplished through statistical analysis and multilevel signal analysis in the wavelet domain. The behavioral indices of the current and voltage signals are extracted by employing the discrete wavelet transform, multiresolution analysis, and the concept of signal energy. These indices are used by a number of independent Fuzzy-ARTMAP neural networks, which aim to classify the fault type and the power-quality events. The fault location is performed after the classification process. A real life three-phase distribution system with 134 nodes - 13.8 kV and 7.065 MVA - was used to test the proposed algorithms, providing satisfactory results, attesting that the proposed algorithms are efficient, fast, and, above all, intelligent.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-01
2018-12-11T17:02:23Z
2018-12-11T17:02:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TPWRD.2015.2464098
IEEE Transactions on Power Delivery, v. 31, n. 2, p. 428-436, 2016.
0885-8977
http://hdl.handle.net/11449/172837
10.1109/TPWRD.2015.2464098
2-s2.0-84963784959
2-s2.0-84963784959.pdf
url http://dx.doi.org/10.1109/TPWRD.2015.2464098
http://hdl.handle.net/11449/172837
identifier_str_mv IEEE Transactions on Power Delivery, v. 31, n. 2, p. 428-436, 2016.
0885-8977
10.1109/TPWRD.2015.2464098
2-s2.0-84963784959
2-s2.0-84963784959.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IEEE Transactions on Power Delivery
1,814
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 428-436
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128585616064512