Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TPWRD.2015.2464098 http://hdl.handle.net/11449/172837 |
Resumo: | This paper presents a methodology for automated disturbance analysis and fault location on electric power distribution systems using a combination of modern techniques for network analysis, signal processing, and intelligent systems. New algorithms to detect, classify, and locate power-quality disturbances are developed. The continuous process of detecting these disturbances is accomplished through statistical analysis and multilevel signal analysis in the wavelet domain. The behavioral indices of the current and voltage signals are extracted by employing the discrete wavelet transform, multiresolution analysis, and the concept of signal energy. These indices are used by a number of independent Fuzzy-ARTMAP neural networks, which aim to classify the fault type and the power-quality events. The fault location is performed after the classification process. A real life three-phase distribution system with 134 nodes - 13.8 kV and 7.065 MVA - was used to test the proposed algorithms, providing satisfactory results, attesting that the proposed algorithms are efficient, fast, and, above all, intelligent. |
id |
UNSP_f6f212e0381a906041cf130b332bbcdb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/172837 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution SystemsFault locationneural networkspattern classificationpower distributionpower quality (PQ)wavelet transformsThis paper presents a methodology for automated disturbance analysis and fault location on electric power distribution systems using a combination of modern techniques for network analysis, signal processing, and intelligent systems. New algorithms to detect, classify, and locate power-quality disturbances are developed. The continuous process of detecting these disturbances is accomplished through statistical analysis and multilevel signal analysis in the wavelet domain. The behavioral indices of the current and voltage signals are extracted by employing the discrete wavelet transform, multiresolution analysis, and the concept of signal energy. These indices are used by a number of independent Fuzzy-ARTMAP neural networks, which aim to classify the fault type and the power-quality events. The fault location is performed after the classification process. A real life three-phase distribution system with 134 nodes - 13.8 kV and 7.065 MVA - was used to test the proposed algorithms, providing satisfactory results, attesting that the proposed algorithms are efficient, fast, and, above all, intelligent.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Do Estado de Mato Grosso - UNEMAT Departamento de Engenharia ElétricaFaculdade de Engenharia de Ilha Solteira UNESP - Univ. Estadual Paulista Departamento de Engenharia ElétricaDepartment of Electrical and Computer Engineering Texas AandM UniversityFaculdade de Engenharia de Ilha Solteira UNESP - Univ. Estadual Paulista Departamento de Engenharia ElétricaFAPESP: 13/23590-8Universidade Do Estado de Mato Grosso - UNEMATUniversidade Estadual Paulista (Unesp)Texas AandM UniversityBíscaro, A. A.P.Pereira, R. A.F. [UNESP]Kezunovic, M.Mantovani, J. R.S. [UNESP]2018-12-11T17:02:23Z2018-12-11T17:02:23Z2016-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article428-436application/pdfhttp://dx.doi.org/10.1109/TPWRD.2015.2464098IEEE Transactions on Power Delivery, v. 31, n. 2, p. 428-436, 2016.0885-8977http://hdl.handle.net/11449/17283710.1109/TPWRD.2015.24640982-s2.0-849637849592-s2.0-84963784959.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIEEE Transactions on Power Delivery1,814info:eu-repo/semantics/openAccess2024-07-04T19:06:03Zoai:repositorio.unesp.br:11449/172837Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:57:21.791248Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems |
title |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems |
spellingShingle |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems Bíscaro, A. A.P. Fault location neural networks pattern classification power distribution power quality (PQ) wavelet transforms |
title_short |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems |
title_full |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems |
title_fullStr |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems |
title_full_unstemmed |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems |
title_sort |
Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems |
author |
Bíscaro, A. A.P. |
author_facet |
Bíscaro, A. A.P. Pereira, R. A.F. [UNESP] Kezunovic, M. Mantovani, J. R.S. [UNESP] |
author_role |
author |
author2 |
Pereira, R. A.F. [UNESP] Kezunovic, M. Mantovani, J. R.S. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Do Estado de Mato Grosso - UNEMAT Universidade Estadual Paulista (Unesp) Texas AandM University |
dc.contributor.author.fl_str_mv |
Bíscaro, A. A.P. Pereira, R. A.F. [UNESP] Kezunovic, M. Mantovani, J. R.S. [UNESP] |
dc.subject.por.fl_str_mv |
Fault location neural networks pattern classification power distribution power quality (PQ) wavelet transforms |
topic |
Fault location neural networks pattern classification power distribution power quality (PQ) wavelet transforms |
description |
This paper presents a methodology for automated disturbance analysis and fault location on electric power distribution systems using a combination of modern techniques for network analysis, signal processing, and intelligent systems. New algorithms to detect, classify, and locate power-quality disturbances are developed. The continuous process of detecting these disturbances is accomplished through statistical analysis and multilevel signal analysis in the wavelet domain. The behavioral indices of the current and voltage signals are extracted by employing the discrete wavelet transform, multiresolution analysis, and the concept of signal energy. These indices are used by a number of independent Fuzzy-ARTMAP neural networks, which aim to classify the fault type and the power-quality events. The fault location is performed after the classification process. A real life three-phase distribution system with 134 nodes - 13.8 kV and 7.065 MVA - was used to test the proposed algorithms, providing satisfactory results, attesting that the proposed algorithms are efficient, fast, and, above all, intelligent. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04-01 2018-12-11T17:02:23Z 2018-12-11T17:02:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TPWRD.2015.2464098 IEEE Transactions on Power Delivery, v. 31, n. 2, p. 428-436, 2016. 0885-8977 http://hdl.handle.net/11449/172837 10.1109/TPWRD.2015.2464098 2-s2.0-84963784959 2-s2.0-84963784959.pdf |
url |
http://dx.doi.org/10.1109/TPWRD.2015.2464098 http://hdl.handle.net/11449/172837 |
identifier_str_mv |
IEEE Transactions on Power Delivery, v. 31, n. 2, p. 428-436, 2016. 0885-8977 10.1109/TPWRD.2015.2464098 2-s2.0-84963784959 2-s2.0-84963784959.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
IEEE Transactions on Power Delivery 1,814 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
428-436 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128585616064512 |