Fault location in underground systems through optimum-path forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ISAP.2011.6082204 http://hdl.handle.net/11449/73076 |
Resumo: | In this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE. |
id |
UNSP_7e19d8cdcea77cbdfba62b22f376e6b7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73076 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fault location in underground systems through optimum-path forestFault LocationOptimum-Path ForestPattern RecognitionUnderground SystemsArtificial Neural NetworkPattern recognition techniquesReflectometrySignal acquisitionsTime domainUnderground distribution systemUnderground systemsElectric fault locationForestryIntelligent systemsNeural networksPattern recognitionPower transmissionSignal processingTime domain analysisAlgorithmsClassificationDefectsElectric Power DistributionForestsNeural NetworksIn this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE.Department of Electrical Engineering UNESP - Univ. Estadual Paulista, São Paulo, São PauloDepartment of Electrical Engineering USP - University of São Paulo, São Paulo, São PauloDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, São PauloDepartment of Electrical Engineering UNESP - Univ. Estadual Paulista, São Paulo, São PauloDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, São PauloUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Souza, André N. [UNESP]Da Costa Jr., Pedro [UNESP]Da Silva, Paulo S. [UNESP]Ramos, Caio C. O.Papa, João Paulo [UNESP]2014-05-27T11:26:20Z2014-05-27T11:26:20Z2011-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ISAP.2011.60822042011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011.http://hdl.handle.net/11449/7307610.1109/ISAP.2011.60822042-s2.0-836551976679039182932747194Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011info:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/73076Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11:27Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fault location in underground systems through optimum-path forest |
title |
Fault location in underground systems through optimum-path forest |
spellingShingle |
Fault location in underground systems through optimum-path forest Souza, André N. [UNESP] Fault Location Optimum-Path Forest Pattern Recognition Underground Systems Artificial Neural Network Pattern recognition techniques Reflectometry Signal acquisitions Time domain Underground distribution system Underground systems Electric fault location Forestry Intelligent systems Neural networks Pattern recognition Power transmission Signal processing Time domain analysis Algorithms Classification Defects Electric Power Distribution Forests Neural Networks |
title_short |
Fault location in underground systems through optimum-path forest |
title_full |
Fault location in underground systems through optimum-path forest |
title_fullStr |
Fault location in underground systems through optimum-path forest |
title_full_unstemmed |
Fault location in underground systems through optimum-path forest |
title_sort |
Fault location in underground systems through optimum-path forest |
author |
Souza, André N. [UNESP] |
author_facet |
Souza, André N. [UNESP] Da Costa Jr., Pedro [UNESP] Da Silva, Paulo S. [UNESP] Ramos, Caio C. O. Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Da Costa Jr., Pedro [UNESP] Da Silva, Paulo S. [UNESP] Ramos, Caio C. O. Papa, João Paulo [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Souza, André N. [UNESP] Da Costa Jr., Pedro [UNESP] Da Silva, Paulo S. [UNESP] Ramos, Caio C. O. Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Fault Location Optimum-Path Forest Pattern Recognition Underground Systems Artificial Neural Network Pattern recognition techniques Reflectometry Signal acquisitions Time domain Underground distribution system Underground systems Electric fault location Forestry Intelligent systems Neural networks Pattern recognition Power transmission Signal processing Time domain analysis Algorithms Classification Defects Electric Power Distribution Forests Neural Networks |
topic |
Fault Location Optimum-Path Forest Pattern Recognition Underground Systems Artificial Neural Network Pattern recognition techniques Reflectometry Signal acquisitions Time domain Underground distribution system Underground systems Electric fault location Forestry Intelligent systems Neural networks Pattern recognition Power transmission Signal processing Time domain analysis Algorithms Classification Defects Electric Power Distribution Forests Neural Networks |
description |
In this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-21 2014-05-27T11:26:20Z 2014-05-27T11:26:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ISAP.2011.6082204 2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011. http://hdl.handle.net/11449/73076 10.1109/ISAP.2011.6082204 2-s2.0-83655197667 9039182932747194 |
url |
http://dx.doi.org/10.1109/ISAP.2011.6082204 http://hdl.handle.net/11449/73076 |
identifier_str_mv |
2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011. 10.1109/ISAP.2011.6082204 2-s2.0-83655197667 9039182932747194 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826304265625272320 |