Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations

Detalhes bibliográficos
Autor(a) principal: Cachazo, Freddy
Data de Publicação: 2020
Outros Autores: Rojas, Jairo M. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/JHEP04(2020)176
http://hdl.handle.net/11449/200340
Resumo: In these notes we use the recently found relation between facets of tropical Grassmannians and generalizations of Feynman diagrams to compute all “biadjoint amplitudes” for n = 7 and k = 3. We also study scattering equations on X (3, 7), the configuration space of seven points on CP2. We prove that the number of solutions is 1272 in a two-step process. In the first step we obtain 1162 explicit solutions to high precision using near-soft kinematics. In the second step we compute the matrix of 360 ×360 biadjoint amplitudes obtained by using the facets of Trop G(3, 7), subtract the result from using the 1162 solutions and compute the rank of the resulting matrix. The rank turns out to be 110, which proves that the number of solutions in addition to the 1162 explicit ones is exactly 110.
id UNSP_f8e30f36fd9d19acefeca4a7ac32def3
oai_identifier_str oai:repositorio.unesp.br:11449/200340
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equationsDifferential and Algebraic GeometryScattering AmplitudesIn these notes we use the recently found relation between facets of tropical Grassmannians and generalizations of Feynman diagrams to compute all “biadjoint amplitudes” for n = 7 and k = 3. We also study scattering equations on X (3, 7), the configuration space of seven points on CP2. We prove that the number of solutions is 1272 in a two-step process. In the first step we obtain 1162 explicit solutions to high precision using near-soft kinematics. In the second step we compute the matrix of 360 ×360 biadjoint amplitudes obtained by using the facets of Trop G(3, 7), subtract the result from using the 1162 solutions and compute the rank of the resulting matrix. The rank turns out to be 110, which proves that the number of solutions in addition to the 1162 explicit ones is exactly 110.Perimeter Institute for Theoretical Physics, 31 Caroline Street NorthDepartment of Physics and Astronomy University of Waterloo, 200 University Avenue WestICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIPerimeter Institute for Theoretical PhysicsUniversity of WaterlooUniversidade Estadual Paulista (Unesp)Cachazo, FreddyRojas, Jairo M. [UNESP]2020-12-12T02:04:04Z2020-12-12T02:04:04Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/JHEP04(2020)176Journal of High Energy Physics, v. 2020, n. 4, 2020.1029-84791126-6708http://hdl.handle.net/11449/20034010.1007/JHEP04(2020)1762-s2.0-85083969873Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physicsinfo:eu-repo/semantics/openAccess2021-10-23T12:24:03Zoai:repositorio.unesp.br:11449/200340Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:31:17.281578Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
title Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
spellingShingle Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
Cachazo, Freddy
Differential and Algebraic Geometry
Scattering Amplitudes
title_short Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
title_full Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
title_fullStr Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
title_full_unstemmed Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
title_sort Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
author Cachazo, Freddy
author_facet Cachazo, Freddy
Rojas, Jairo M. [UNESP]
author_role author
author2 Rojas, Jairo M. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Perimeter Institute for Theoretical Physics
University of Waterloo
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Cachazo, Freddy
Rojas, Jairo M. [UNESP]
dc.subject.por.fl_str_mv Differential and Algebraic Geometry
Scattering Amplitudes
topic Differential and Algebraic Geometry
Scattering Amplitudes
description In these notes we use the recently found relation between facets of tropical Grassmannians and generalizations of Feynman diagrams to compute all “biadjoint amplitudes” for n = 7 and k = 3. We also study scattering equations on X (3, 7), the configuration space of seven points on CP2. We prove that the number of solutions is 1272 in a two-step process. In the first step we obtain 1162 explicit solutions to high precision using near-soft kinematics. In the second step we compute the matrix of 360 ×360 biadjoint amplitudes obtained by using the facets of Trop G(3, 7), subtract the result from using the 1162 solutions and compute the rank of the resulting matrix. The rank turns out to be 110, which proves that the number of solutions in addition to the 1162 explicit ones is exactly 110.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:04:04Z
2020-12-12T02:04:04Z
2020-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/JHEP04(2020)176
Journal of High Energy Physics, v. 2020, n. 4, 2020.
1029-8479
1126-6708
http://hdl.handle.net/11449/200340
10.1007/JHEP04(2020)176
2-s2.0-85083969873
url http://dx.doi.org/10.1007/JHEP04(2020)176
http://hdl.handle.net/11449/200340
identifier_str_mv Journal of High Energy Physics, v. 2020, n. 4, 2020.
1029-8479
1126-6708
10.1007/JHEP04(2020)176
2-s2.0-85083969873
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of High Energy Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128941428310016