Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/JHEP04(2020)176 http://hdl.handle.net/11449/200340 |
Resumo: | In these notes we use the recently found relation between facets of tropical Grassmannians and generalizations of Feynman diagrams to compute all “biadjoint amplitudes” for n = 7 and k = 3. We also study scattering equations on X (3, 7), the configuration space of seven points on CP2. We prove that the number of solutions is 1272 in a two-step process. In the first step we obtain 1162 explicit solutions to high precision using near-soft kinematics. In the second step we compute the matrix of 360 ×360 biadjoint amplitudes obtained by using the facets of Trop G(3, 7), subtract the result from using the 1162 solutions and compute the rank of the resulting matrix. The rank turns out to be 110, which proves that the number of solutions in addition to the 1162 explicit ones is exactly 110. |
id |
UNSP_f8e30f36fd9d19acefeca4a7ac32def3 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/200340 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equationsDifferential and Algebraic GeometryScattering AmplitudesIn these notes we use the recently found relation between facets of tropical Grassmannians and generalizations of Feynman diagrams to compute all “biadjoint amplitudes” for n = 7 and k = 3. We also study scattering equations on X (3, 7), the configuration space of seven points on CP2. We prove that the number of solutions is 1272 in a two-step process. In the first step we obtain 1162 explicit solutions to high precision using near-soft kinematics. In the second step we compute the matrix of 360 ×360 biadjoint amplitudes obtained by using the facets of Trop G(3, 7), subtract the result from using the 1162 solutions and compute the rank of the resulting matrix. The rank turns out to be 110, which proves that the number of solutions in addition to the 1162 explicit ones is exactly 110.Perimeter Institute for Theoretical Physics, 31 Caroline Street NorthDepartment of Physics and Astronomy University of Waterloo, 200 University Avenue WestICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIPerimeter Institute for Theoretical PhysicsUniversity of WaterlooUniversidade Estadual Paulista (Unesp)Cachazo, FreddyRojas, Jairo M. [UNESP]2020-12-12T02:04:04Z2020-12-12T02:04:04Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/JHEP04(2020)176Journal of High Energy Physics, v. 2020, n. 4, 2020.1029-84791126-6708http://hdl.handle.net/11449/20034010.1007/JHEP04(2020)1762-s2.0-85083969873Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physicsinfo:eu-repo/semantics/openAccess2021-10-23T12:24:03Zoai:repositorio.unesp.br:11449/200340Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:31:17.281578Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations |
title |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations |
spellingShingle |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations Cachazo, Freddy Differential and Algebraic Geometry Scattering Amplitudes |
title_short |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations |
title_full |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations |
title_fullStr |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations |
title_full_unstemmed |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations |
title_sort |
Notes on biadjoint amplitudes, Trop G(3, 7) and X(3, 7) scattering equations |
author |
Cachazo, Freddy |
author_facet |
Cachazo, Freddy Rojas, Jairo M. [UNESP] |
author_role |
author |
author2 |
Rojas, Jairo M. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Perimeter Institute for Theoretical Physics University of Waterloo Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Cachazo, Freddy Rojas, Jairo M. [UNESP] |
dc.subject.por.fl_str_mv |
Differential and Algebraic Geometry Scattering Amplitudes |
topic |
Differential and Algebraic Geometry Scattering Amplitudes |
description |
In these notes we use the recently found relation between facets of tropical Grassmannians and generalizations of Feynman diagrams to compute all “biadjoint amplitudes” for n = 7 and k = 3. We also study scattering equations on X (3, 7), the configuration space of seven points on CP2. We prove that the number of solutions is 1272 in a two-step process. In the first step we obtain 1162 explicit solutions to high precision using near-soft kinematics. In the second step we compute the matrix of 360 ×360 biadjoint amplitudes obtained by using the facets of Trop G(3, 7), subtract the result from using the 1162 solutions and compute the rank of the resulting matrix. The rank turns out to be 110, which proves that the number of solutions in addition to the 1162 explicit ones is exactly 110. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:04:04Z 2020-12-12T02:04:04Z 2020-04-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/JHEP04(2020)176 Journal of High Energy Physics, v. 2020, n. 4, 2020. 1029-8479 1126-6708 http://hdl.handle.net/11449/200340 10.1007/JHEP04(2020)176 2-s2.0-85083969873 |
url |
http://dx.doi.org/10.1007/JHEP04(2020)176 http://hdl.handle.net/11449/200340 |
identifier_str_mv |
Journal of High Energy Physics, v. 2020, n. 4, 2020. 1029-8479 1126-6708 10.1007/JHEP04(2020)176 2-s2.0-85083969873 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of High Energy Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128941428310016 |