Computation of contour integrals on ℳ0,n
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/JHEP04(2016)108 http://hdl.handle.net/11449/172862 |
Resumo: | Contour integrals of rational functions over (Formula presented.) , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on (Formula presented.). The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen’s theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory. |
id |
UNSP_fb031d933cd60945383e7b9e3abad296 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/172862 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Computation of contour integrals on ℳ0,nDifferential and Algebraic GeometryScattering AmplitudesSuperstrings and Heterotic StringsContour integrals of rational functions over (Formula presented.) , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on (Formula presented.). The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen’s theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory.Perimeter Institute for Theoretical PhysicsInstituto de Fisica Teorica UNESP — Universidade Estadual Paulista, Caixa Postal 70532-2Facultad de Ciencias Básicas — Universidad Santiago de Cali, Calle 5 N °62-00, Barrio PampalindaInstituto de Fisica Teorica UNESP — Universidade Estadual Paulista, Caixa Postal 70532-2Perimeter Institute for Theoretical PhysicsUniversidade Estadual Paulista (Unesp)Facultad de Ciencias Básicas — Universidad Santiago de CaliCachazo, FreddyGomez, Humberto [UNESP]2018-12-11T17:02:28Z2018-12-11T17:02:28Z2016-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1007/JHEP04(2016)108Journal of High Energy Physics, v. 2016, n. 4, 2016.1029-84791126-6708http://hdl.handle.net/11449/17286210.1007/JHEP04(2016)1082-s2.0-849642521412-s2.0-84964252141.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physics1,2271,227info:eu-repo/semantics/openAccess2023-12-15T06:19:50Zoai:repositorio.unesp.br:11449/172862Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:26:04.559995Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Computation of contour integrals on ℳ0,n |
title |
Computation of contour integrals on ℳ0,n |
spellingShingle |
Computation of contour integrals on ℳ0,n Cachazo, Freddy Differential and Algebraic Geometry Scattering Amplitudes Superstrings and Heterotic Strings |
title_short |
Computation of contour integrals on ℳ0,n |
title_full |
Computation of contour integrals on ℳ0,n |
title_fullStr |
Computation of contour integrals on ℳ0,n |
title_full_unstemmed |
Computation of contour integrals on ℳ0,n |
title_sort |
Computation of contour integrals on ℳ0,n |
author |
Cachazo, Freddy |
author_facet |
Cachazo, Freddy Gomez, Humberto [UNESP] |
author_role |
author |
author2 |
Gomez, Humberto [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Perimeter Institute for Theoretical Physics Universidade Estadual Paulista (Unesp) Facultad de Ciencias Básicas — Universidad Santiago de Cali |
dc.contributor.author.fl_str_mv |
Cachazo, Freddy Gomez, Humberto [UNESP] |
dc.subject.por.fl_str_mv |
Differential and Algebraic Geometry Scattering Amplitudes Superstrings and Heterotic Strings |
topic |
Differential and Algebraic Geometry Scattering Amplitudes Superstrings and Heterotic Strings |
description |
Contour integrals of rational functions over (Formula presented.) , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on (Formula presented.). The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen’s theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04-01 2018-12-11T17:02:28Z 2018-12-11T17:02:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/JHEP04(2016)108 Journal of High Energy Physics, v. 2016, n. 4, 2016. 1029-8479 1126-6708 http://hdl.handle.net/11449/172862 10.1007/JHEP04(2016)108 2-s2.0-84964252141 2-s2.0-84964252141.pdf |
url |
http://dx.doi.org/10.1007/JHEP04(2016)108 http://hdl.handle.net/11449/172862 |
identifier_str_mv |
Journal of High Energy Physics, v. 2016, n. 4, 2016. 1029-8479 1126-6708 10.1007/JHEP04(2016)108 2-s2.0-84964252141 2-s2.0-84964252141.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of High Energy Physics 1,227 1,227 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129201225596928 |