Computation of contour integrals on ℳ0,n

Detalhes bibliográficos
Autor(a) principal: Cachazo, Freddy
Data de Publicação: 2016
Outros Autores: Gomez, Humberto [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/JHEP04(2016)108
http://hdl.handle.net/11449/172862
Resumo: Contour integrals of rational functions over (Formula presented.) , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on (Formula presented.). The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen’s theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory.
id UNSP_fb031d933cd60945383e7b9e3abad296
oai_identifier_str oai:repositorio.unesp.br:11449/172862
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Computation of contour integrals on ℳ0,nDifferential and Algebraic GeometryScattering AmplitudesSuperstrings and Heterotic StringsContour integrals of rational functions over (Formula presented.) , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on (Formula presented.). The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen’s theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory.Perimeter Institute for Theoretical PhysicsInstituto de Fisica Teorica UNESP — Universidade Estadual Paulista, Caixa Postal 70532-2Facultad de Ciencias Básicas — Universidad Santiago de Cali, Calle 5 N °62-00, Barrio PampalindaInstituto de Fisica Teorica UNESP — Universidade Estadual Paulista, Caixa Postal 70532-2Perimeter Institute for Theoretical PhysicsUniversidade Estadual Paulista (Unesp)Facultad de Ciencias Básicas — Universidad Santiago de CaliCachazo, FreddyGomez, Humberto [UNESP]2018-12-11T17:02:28Z2018-12-11T17:02:28Z2016-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1007/JHEP04(2016)108Journal of High Energy Physics, v. 2016, n. 4, 2016.1029-84791126-6708http://hdl.handle.net/11449/17286210.1007/JHEP04(2016)1082-s2.0-849642521412-s2.0-84964252141.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physics1,2271,227info:eu-repo/semantics/openAccess2023-12-15T06:19:50Zoai:repositorio.unesp.br:11449/172862Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:26:04.559995Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Computation of contour integrals on ℳ0,n
title Computation of contour integrals on ℳ0,n
spellingShingle Computation of contour integrals on ℳ0,n
Cachazo, Freddy
Differential and Algebraic Geometry
Scattering Amplitudes
Superstrings and Heterotic Strings
title_short Computation of contour integrals on ℳ0,n
title_full Computation of contour integrals on ℳ0,n
title_fullStr Computation of contour integrals on ℳ0,n
title_full_unstemmed Computation of contour integrals on ℳ0,n
title_sort Computation of contour integrals on ℳ0,n
author Cachazo, Freddy
author_facet Cachazo, Freddy
Gomez, Humberto [UNESP]
author_role author
author2 Gomez, Humberto [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Perimeter Institute for Theoretical Physics
Universidade Estadual Paulista (Unesp)
Facultad de Ciencias Básicas — Universidad Santiago de Cali
dc.contributor.author.fl_str_mv Cachazo, Freddy
Gomez, Humberto [UNESP]
dc.subject.por.fl_str_mv Differential and Algebraic Geometry
Scattering Amplitudes
Superstrings and Heterotic Strings
topic Differential and Algebraic Geometry
Scattering Amplitudes
Superstrings and Heterotic Strings
description Contour integrals of rational functions over (Formula presented.) , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on (Formula presented.). The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen’s theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-01
2018-12-11T17:02:28Z
2018-12-11T17:02:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/JHEP04(2016)108
Journal of High Energy Physics, v. 2016, n. 4, 2016.
1029-8479
1126-6708
http://hdl.handle.net/11449/172862
10.1007/JHEP04(2016)108
2-s2.0-84964252141
2-s2.0-84964252141.pdf
url http://dx.doi.org/10.1007/JHEP04(2016)108
http://hdl.handle.net/11449/172862
identifier_str_mv Journal of High Energy Physics, v. 2016, n. 4, 2016.
1029-8479
1126-6708
10.1007/JHEP04(2016)108
2-s2.0-84964252141
2-s2.0-84964252141.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of High Energy Physics
1,227
1,227
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129201225596928