Escape of particles in a time-dependent potential well
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevE.83.066211 http://hdl.handle.net/11449/226453 |
Resumo: | We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves. When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed in the phase space. © 2011 American Physical Society. |
id |
UNSP_f963934a1e580068eda145ccafeaaf40 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/226453 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Escape of particles in a time-dependent potential wellWe investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves. When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed in the phase space. © 2011 American Physical Society.Departamento de Estatística Matemática Aplicada e Computação UNESP-Universidade Estadual Paulista, Avenida 24A, 1515 CEP 13506-900, Rio Claro, São PauloSchool of Mathematics University of Bristol, BristolDepartamento de Estatística Matemática Aplicada e Computação UNESP-Universidade Estadual Paulista, Avenida 24A, 1515 CEP 13506-900, Rio Claro, São PauloUniversidade Estadual Paulista (UNESP)University of BristolDa Costa, Diogo Ricardo [UNESP]Dettmann, Carl P.Leonel, Edson D. [UNESP]2022-04-28T23:48:21Z2022-04-28T23:48:21Z2011-06-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevE.83.066211Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 83, n. 6, 2011.1539-37551550-2376http://hdl.handle.net/11449/22645310.1103/PhysRevE.83.0662112-s2.0-79961057459Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsinfo:eu-repo/semantics/openAccess2022-04-28T23:48:21Zoai:repositorio.unesp.br:11449/226453Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:37:05.579799Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Escape of particles in a time-dependent potential well |
title |
Escape of particles in a time-dependent potential well |
spellingShingle |
Escape of particles in a time-dependent potential well Da Costa, Diogo Ricardo [UNESP] |
title_short |
Escape of particles in a time-dependent potential well |
title_full |
Escape of particles in a time-dependent potential well |
title_fullStr |
Escape of particles in a time-dependent potential well |
title_full_unstemmed |
Escape of particles in a time-dependent potential well |
title_sort |
Escape of particles in a time-dependent potential well |
author |
Da Costa, Diogo Ricardo [UNESP] |
author_facet |
Da Costa, Diogo Ricardo [UNESP] Dettmann, Carl P. Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
Dettmann, Carl P. Leonel, Edson D. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) University of Bristol |
dc.contributor.author.fl_str_mv |
Da Costa, Diogo Ricardo [UNESP] Dettmann, Carl P. Leonel, Edson D. [UNESP] |
description |
We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves. When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed in the phase space. © 2011 American Physical Society. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06-22 2022-04-28T23:48:21Z 2022-04-28T23:48:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevE.83.066211 Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 83, n. 6, 2011. 1539-3755 1550-2376 http://hdl.handle.net/11449/226453 10.1103/PhysRevE.83.066211 2-s2.0-79961057459 |
url |
http://dx.doi.org/10.1103/PhysRevE.83.066211 http://hdl.handle.net/11449/226453 |
identifier_str_mv |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 83, n. 6, 2011. 1539-3755 1550-2376 10.1103/PhysRevE.83.066211 2-s2.0-79961057459 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129536886308864 |