Piecewise linear systems with closed sliding poly-Trajectories
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
DOI: | 10.36045/bbms/1414091008 |
Texto Completo: | http://dx.doi.org/10.36045/bbms/1414091008 http://hdl.handle.net/11449/199604 |
Resumo: | In this paper we study piecewise linear (PWL) vector fields F(x, y) = € F+(x, y) if x ≥ 0, F-(x, y) if x ≤ 0, where x = (x, y) € ℝ2, F+(x) = A+x + b+ and F-(x) = A-x + b-, A+ = (a+ ij ) and A- = (a- ij ) are (2 ×2) constant matrices, b+ = (b+ 1 , b+ 2 ) € R2 and b- = (b- 1 , b- 2 ) € ℝ2 are constant vectors in ℝ2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on S (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with S, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-Trajectories. |
id |
UNSP_fe5beb97a3640cd9c605ea7124f04457 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/199604 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Piecewise linear systems with closed sliding poly-TrajectoriesPiecewise linear systemsPoly-TrajectoriesVector fieldsIn this paper we study piecewise linear (PWL) vector fields F(x, y) = € F+(x, y) if x ≥ 0, F-(x, y) if x ≤ 0, where x = (x, y) € ℝ2, F+(x) = A+x + b+ and F-(x) = A-x + b-, A+ = (a+ ij ) and A- = (a- ij ) are (2 ×2) constant matrices, b+ = (b+ 1 , b+ 2 ) € R2 and b- = (b- 1 , b- 2 ) € ℝ2 are constant vectors in ℝ2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on S (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with S, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-Trajectories.Departamento de Mateḿatica - IBILCE-UNESP, Rua C. Colombo, 2265Departamento de Mateḿatica - IBILCE-UNESP, Rua C. Colombo, 2265Universidade Estadual Paulista (Unesp)De Moraes, Jaime R. [UNESP]Da Silva, Paulo R. [UNESP]2020-12-12T01:44:25Z2020-12-12T01:44:25Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article653-684http://dx.doi.org/10.36045/bbms/1414091008Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 21, n. 4, p. 653-684, 2014.1370-1444http://hdl.handle.net/11449/19960410.36045/bbms/14140910082-s2.0-85074502352Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBulletin of the Belgian Mathematical Society - Simon Stevininfo:eu-repo/semantics/openAccess2021-10-23T08:32:12Zoai:repositorio.unesp.br:11449/199604Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:24:21.669532Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Piecewise linear systems with closed sliding poly-Trajectories |
title |
Piecewise linear systems with closed sliding poly-Trajectories |
spellingShingle |
Piecewise linear systems with closed sliding poly-Trajectories Piecewise linear systems with closed sliding poly-Trajectories De Moraes, Jaime R. [UNESP] Piecewise linear systems Poly-Trajectories Vector fields De Moraes, Jaime R. [UNESP] Piecewise linear systems Poly-Trajectories Vector fields |
title_short |
Piecewise linear systems with closed sliding poly-Trajectories |
title_full |
Piecewise linear systems with closed sliding poly-Trajectories |
title_fullStr |
Piecewise linear systems with closed sliding poly-Trajectories Piecewise linear systems with closed sliding poly-Trajectories |
title_full_unstemmed |
Piecewise linear systems with closed sliding poly-Trajectories Piecewise linear systems with closed sliding poly-Trajectories |
title_sort |
Piecewise linear systems with closed sliding poly-Trajectories |
author |
De Moraes, Jaime R. [UNESP] |
author_facet |
De Moraes, Jaime R. [UNESP] De Moraes, Jaime R. [UNESP] Da Silva, Paulo R. [UNESP] Da Silva, Paulo R. [UNESP] |
author_role |
author |
author2 |
Da Silva, Paulo R. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
De Moraes, Jaime R. [UNESP] Da Silva, Paulo R. [UNESP] |
dc.subject.por.fl_str_mv |
Piecewise linear systems Poly-Trajectories Vector fields |
topic |
Piecewise linear systems Poly-Trajectories Vector fields |
description |
In this paper we study piecewise linear (PWL) vector fields F(x, y) = € F+(x, y) if x ≥ 0, F-(x, y) if x ≤ 0, where x = (x, y) € ℝ2, F+(x) = A+x + b+ and F-(x) = A-x + b-, A+ = (a+ ij ) and A- = (a- ij ) are (2 ×2) constant matrices, b+ = (b+ 1 , b+ 2 ) € R2 and b- = (b- 1 , b- 2 ) € ℝ2 are constant vectors in ℝ2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on S (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with S, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-Trajectories. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2020-12-12T01:44:25Z 2020-12-12T01:44:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.36045/bbms/1414091008 Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 21, n. 4, p. 653-684, 2014. 1370-1444 http://hdl.handle.net/11449/199604 10.36045/bbms/1414091008 2-s2.0-85074502352 |
url |
http://dx.doi.org/10.36045/bbms/1414091008 http://hdl.handle.net/11449/199604 |
identifier_str_mv |
Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 21, n. 4, p. 653-684, 2014. 1370-1444 10.36045/bbms/1414091008 2-s2.0-85074502352 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bulletin of the Belgian Mathematical Society - Simon Stevin |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
653-684 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1822218519773708288 |
dc.identifier.doi.none.fl_str_mv |
10.36045/bbms/1414091008 |