A dual homological invariant and some properties

Detalhes bibliográficos
Autor(a) principal: Andrade, Maria Gorete Carreira [UNESP]
Data de Publicação: 2014
Outros Autores: Gazon, Amanda Buosi [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://www.diogenes.bg/ijam/contents/2014-27-1/2/
http://hdl.handle.net/11449/122696
Resumo: Based on the cohomology theory of groups, Andrade and Fanti defined in [1] an algebraic invariant, denoted by E(G,S, M), where G is a group, S is a family of subgroups of G with infinite index and M is a Z2G-module. In this work, by using the homology theory of groups instead of cohomology theory, we define an invariant ``dual'' to E(G, S, M), which we denote by E*(G, S, M). The purpose of this paper is, through the invariant E*(G, S, M), to obtain some results and applications in the theory of duality groups and group pairs, similar to those shown in Andrade and Fanti [2], and thus, providing an alternative way to get applications and properties of this theory.
id UNSP_feebc0812bf08ae9982cf19076e6e003
oai_identifier_str oai:repositorio.unesp.br:11449/122696
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A dual homological invariant and some propertieshomology of groupsdualitycohomological invariantsBased on the cohomology theory of groups, Andrade and Fanti defined in [1] an algebraic invariant, denoted by E(G,S, M), where G is a group, S is a family of subgroups of G with infinite index and M is a Z2G-module. In this work, by using the homology theory of groups instead of cohomology theory, we define an invariant ``dual'' to E(G, S, M), which we denote by E*(G, S, M). The purpose of this paper is, through the invariant E*(G, S, M), to obtain some results and applications in the theory of duality groups and group pairs, similar to those shown in Andrade and Fanti [2], and thus, providing an alternative way to get applications and properties of this theory.Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristovão Colombo, 2265, Jd. Nazareth, CEP 15054-000, SP, BrasilUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristovão Colombo, 2265, Jd. Nazareth, CEP 15054-000, SP, BrasilUniversidade Estadual Paulista (Unesp)Andrade, Maria Gorete Carreira [UNESP]Gazon, Amanda Buosi [UNESP]2015-04-27T11:55:58Z2015-04-27T11:55:58Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13-20http://www.diogenes.bg/ijam/contents/2014-27-1/2/International Journal of Applied Mathematics, v. 27, n. 1, p. 13-20, 2014.1311-1728http://hdl.handle.net/11449/12269610.12732/ijam.v27i1.23186337502957366Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Applied Mathematicsinfo:eu-repo/semantics/openAccess2021-10-23T21:56:33Zoai:repositorio.unesp.br:11449/122696Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:54:12.893999Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A dual homological invariant and some properties
title A dual homological invariant and some properties
spellingShingle A dual homological invariant and some properties
Andrade, Maria Gorete Carreira [UNESP]
homology of groups
duality
cohomological invariants
title_short A dual homological invariant and some properties
title_full A dual homological invariant and some properties
title_fullStr A dual homological invariant and some properties
title_full_unstemmed A dual homological invariant and some properties
title_sort A dual homological invariant and some properties
author Andrade, Maria Gorete Carreira [UNESP]
author_facet Andrade, Maria Gorete Carreira [UNESP]
Gazon, Amanda Buosi [UNESP]
author_role author
author2 Gazon, Amanda Buosi [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Andrade, Maria Gorete Carreira [UNESP]
Gazon, Amanda Buosi [UNESP]
dc.subject.por.fl_str_mv homology of groups
duality
cohomological invariants
topic homology of groups
duality
cohomological invariants
description Based on the cohomology theory of groups, Andrade and Fanti defined in [1] an algebraic invariant, denoted by E(G,S, M), where G is a group, S is a family of subgroups of G with infinite index and M is a Z2G-module. In this work, by using the homology theory of groups instead of cohomology theory, we define an invariant ``dual'' to E(G, S, M), which we denote by E*(G, S, M). The purpose of this paper is, through the invariant E*(G, S, M), to obtain some results and applications in the theory of duality groups and group pairs, similar to those shown in Andrade and Fanti [2], and thus, providing an alternative way to get applications and properties of this theory.
publishDate 2014
dc.date.none.fl_str_mv 2014
2015-04-27T11:55:58Z
2015-04-27T11:55:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.diogenes.bg/ijam/contents/2014-27-1/2/
International Journal of Applied Mathematics, v. 27, n. 1, p. 13-20, 2014.
1311-1728
http://hdl.handle.net/11449/122696
10.12732/ijam.v27i1.2
3186337502957366
url http://www.diogenes.bg/ijam/contents/2014-27-1/2/
http://hdl.handle.net/11449/122696
identifier_str_mv International Journal of Applied Mathematics, v. 27, n. 1, p. 13-20, 2014.
1311-1728
10.12732/ijam.v27i1.2
3186337502957366
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 13-20
dc.source.none.fl_str_mv Currículo Lattes
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129562975928320