Dualidade de Poincaré e invariantes cohomológicos

Detalhes bibliográficos
Autor(a) principal: Cellini, Caroline Paula [UNESP]
Data de Publicação: 2008
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/99831
Resumo: Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos ends e grupos de dualidade são apresentados.
id UNSP_fc7b226cdcd8054372aa287202db3e66
oai_identifier_str oai:repositorio.unesp.br:11449/99831
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Dualidade de Poincaré e invariantes cohomológicosTopologia algebricaCohomologiaDualidade (Matematica)Poincaré, Dualidade deCohomologia de gruposEnds de pares de gruposPoincaré dualityCohomology with compact supportDuality groupsAspherical manifoldsCohomological invariant endsNeste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos ends e grupos de dualidade são apresentados.In this work we consider some aspects of duality theory. It can be divided in three principal parts. In the first we prove the Poincaré Duality theorem for orientable manifolds (without boundary). For that, it is necessary the use of the direct limit and cohomology with compact supports. In the second part we de¯ne duality groups, in particular, Poincaré duality groups, we introduce some results and observations about the relationship between such groups and fundamental groups of aspherical closed manifolds, that still is an open problem. Finally, some results envolving the cohomological invariant ends and duality groups are presented.Universidade Estadual Paulista (Unesp)Fanti, Ermínia de Lourdes Campello [UNESP]Universidade Estadual Paulista (Unesp)Cellini, Caroline Paula [UNESP]2014-06-11T19:30:22Z2014-06-11T19:30:22Z2008-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis107 f. : il.application/pdfCELLINI, Caroline Paula. Dualidade de Poincaré e invariantes cohomológicos. 2008. 107 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2008.http://hdl.handle.net/11449/99831000551252cellini_cp_me_sjrp.pdf33004153071P0Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-01-27T06:54:10Zoai:repositorio.unesp.br:11449/99831Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:04:20.716451Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Dualidade de Poincaré e invariantes cohomológicos
title Dualidade de Poincaré e invariantes cohomológicos
spellingShingle Dualidade de Poincaré e invariantes cohomológicos
Cellini, Caroline Paula [UNESP]
Topologia algebrica
Cohomologia
Dualidade (Matematica)
Poincaré, Dualidade de
Cohomologia de grupos
Ends de pares de grupos
Poincaré duality
Cohomology with compact support
Duality groups
Aspherical manifolds
Cohomological invariant ends
title_short Dualidade de Poincaré e invariantes cohomológicos
title_full Dualidade de Poincaré e invariantes cohomológicos
title_fullStr Dualidade de Poincaré e invariantes cohomológicos
title_full_unstemmed Dualidade de Poincaré e invariantes cohomológicos
title_sort Dualidade de Poincaré e invariantes cohomológicos
author Cellini, Caroline Paula [UNESP]
author_facet Cellini, Caroline Paula [UNESP]
author_role author
dc.contributor.none.fl_str_mv Fanti, Ermínia de Lourdes Campello [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Cellini, Caroline Paula [UNESP]
dc.subject.por.fl_str_mv Topologia algebrica
Cohomologia
Dualidade (Matematica)
Poincaré, Dualidade de
Cohomologia de grupos
Ends de pares de grupos
Poincaré duality
Cohomology with compact support
Duality groups
Aspherical manifolds
Cohomological invariant ends
topic Topologia algebrica
Cohomologia
Dualidade (Matematica)
Poincaré, Dualidade de
Cohomologia de grupos
Ends de pares de grupos
Poincaré duality
Cohomology with compact support
Duality groups
Aspherical manifolds
Cohomological invariant ends
description Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos ends e grupos de dualidade são apresentados.
publishDate 2008
dc.date.none.fl_str_mv 2008-03-31
2014-06-11T19:30:22Z
2014-06-11T19:30:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CELLINI, Caroline Paula. Dualidade de Poincaré e invariantes cohomológicos. 2008. 107 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2008.
http://hdl.handle.net/11449/99831
000551252
cellini_cp_me_sjrp.pdf
33004153071P0
identifier_str_mv CELLINI, Caroline Paula. Dualidade de Poincaré e invariantes cohomológicos. 2008. 107 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2008.
000551252
cellini_cp_me_sjrp.pdf
33004153071P0
url http://hdl.handle.net/11449/99831
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 107 f. : il.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129579800330240