Estresse celular para a produção de biocompostos em Spirulina platensis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
Texto Completo: | http://tede.upf.br:8080/jspui/handle/tede/1728 |
Resumo: | The production of renewable biofuel in microalgae based biorefinery have receive attention as potential energy sources for the future. The need to replace the energy matrix and reduce impacts of non-renewable raw materials on global warming and climate change increase the necessity of new renewable fuels. Studies have been conducted with microalgae due to their short growing time, plus they are abundant raw materials and use as growth energy CO2 (greenhouse gas) and solar energy. The microalgae biomass can easily accumulate intracellular carbohydrates, which can be used in bioethanol production, biokeresone, biogas, and other biofuels. The stimulation of environmental and nutritional stress allows changes in the microalgae metabolic routes, causing carbohydrates to accumulate in energy form, increasing productivity. Also, high-value coproducts can be created to increase the economical level of microalgae biorefineries, such as biosurfactants. This study goal is to increase the synthesis of extracellular carbohydrates and biosurfactants from the Spirulina platensis by nutritional and physical stresses. Spirulina platensis was cultivated in two steps. In the first step, nutrient -rich medium (50% Zarrouk‟s medium ) was used, allowing cyanobacteria growth until the end of the exponential growth phase (18° d). In the second step, the gowned cells were centrifuged and recycled in a new growth medium (20% Zarrouk‟s medium), and subjected to physical stresses (UV radiation, photoperiod/luminosity, NaCl, hydrogen peroxide), nutritional stresses (shortage or enrichment of Ca, Fe and Mg concentrations in 20% Zarrouk‟s medium ). All stress conditions were performed in duplicate and with three concentration levels over 15 days (Stage II). At the end, intracellular production of carbohydrates, proteins and extracellular biosurfactants were analyzed. The best results were selected for a combining stress approach. Therefore, a 2 2 factorial design was made. The stresses with the highest carbohydrate productivities in the first stage of the two stage culture study was 300 mM NaCl (10.27 mg.L -1 .d -1 ), with UV radiation 6 min (9.80 mg.L -1 .d -1 ), Mg 0.01 g.L -1 (9.75 mg.L -1 .d -1 ) and 18h/06h photoperiod of 67.5 μmol photons m -2 .s -1 (27.84 mg.L -1 d -1 ). The biosurfactants quantification from the reduction of surface tensions was identified in all the calcium supplementation cultures. The development of stable emulsions was only verified under photoperiod/light intensity stress conditions. The nutrient restriction by 20% Zarrouk‟s medium , combined with higher light intensity and photoperiod shown to be an efficient strategy to achieve higher intracellular concentrations (59 .71%) and carbohydrate productivities (55.85 mg.L -1 .d -1 ) in a single cultivation stage. |
id |
UPF-1_123dd94abb3df525e020884cd8df0875 |
---|---|
oai_identifier_str |
oai:tede.upf.br:tede/1728 |
network_acronym_str |
UPF-1 |
network_name_str |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
repository_id_str |
|
spelling |
Colla, Luciane Maria02309369977http://lattes.cnpq.br/480430403645564003038839019http://lattes.cnpq.br/1159754790899932Zaparoli, Munise2019-07-08T11:54:35Z2019-03-15ZAPAROLI, Munise. Estresse celular para a produção de biocompostos em Spirulina platensis. 2019. 84f. . Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2019.http://tede.upf.br:8080/jspui/handle/tede/1728The production of renewable biofuel in microalgae based biorefinery have receive attention as potential energy sources for the future. The need to replace the energy matrix and reduce impacts of non-renewable raw materials on global warming and climate change increase the necessity of new renewable fuels. Studies have been conducted with microalgae due to their short growing time, plus they are abundant raw materials and use as growth energy CO2 (greenhouse gas) and solar energy. The microalgae biomass can easily accumulate intracellular carbohydrates, which can be used in bioethanol production, biokeresone, biogas, and other biofuels. The stimulation of environmental and nutritional stress allows changes in the microalgae metabolic routes, causing carbohydrates to accumulate in energy form, increasing productivity. Also, high-value coproducts can be created to increase the economical level of microalgae biorefineries, such as biosurfactants. This study goal is to increase the synthesis of extracellular carbohydrates and biosurfactants from the Spirulina platensis by nutritional and physical stresses. Spirulina platensis was cultivated in two steps. In the first step, nutrient -rich medium (50% Zarrouk‟s medium ) was used, allowing cyanobacteria growth until the end of the exponential growth phase (18° d). In the second step, the gowned cells were centrifuged and recycled in a new growth medium (20% Zarrouk‟s medium), and subjected to physical stresses (UV radiation, photoperiod/luminosity, NaCl, hydrogen peroxide), nutritional stresses (shortage or enrichment of Ca, Fe and Mg concentrations in 20% Zarrouk‟s medium ). All stress conditions were performed in duplicate and with three concentration levels over 15 days (Stage II). At the end, intracellular production of carbohydrates, proteins and extracellular biosurfactants were analyzed. The best results were selected for a combining stress approach. Therefore, a 2 2 factorial design was made. The stresses with the highest carbohydrate productivities in the first stage of the two stage culture study was 300 mM NaCl (10.27 mg.L -1 .d -1 ), with UV radiation 6 min (9.80 mg.L -1 .d -1 ), Mg 0.01 g.L -1 (9.75 mg.L -1 .d -1 ) and 18h/06h photoperiod of 67.5 μmol photons m -2 .s -1 (27.84 mg.L -1 d -1 ). The biosurfactants quantification from the reduction of surface tensions was identified in all the calcium supplementation cultures. The development of stable emulsions was only verified under photoperiod/light intensity stress conditions. The nutrient restriction by 20% Zarrouk‟s medium , combined with higher light intensity and photoperiod shown to be an efficient strategy to achieve higher intracellular concentrations (59 .71%) and carbohydrate productivities (55.85 mg.L -1 .d -1 ) in a single cultivation stage.As biorrefinarias à base de microalgas para a produção de biocombustíveis renováveis como o bioetanol e outros produtos químicos de alto valor receberam grande atenção como potenciais fontes de energia para o futuro, em função da necessidade de substituição da matriz energética e redução dos impactos das matérias-primas não renováveis sobre o aquecimento global e mudanças climáticas. Muitas pesquisas têm sido realizadas com microalgas devido ao seu curto tempo de geração, por serem matérias-primas abundantes e por utilizarem como fonte de energia para o crescimento a energia solar e CO2, um dos gases do efeito estufa. Quando essas biomassas apresentam facilidade de acúmulo de carboidratos intracelulares, estes podem ser utilizados na produção de bioetanol, além de outros biocombustíveis, como o biogás e bioquerosene. A aplicação de estressores ambientais e nutricionais possibilitam mudanças nas rotas metabólicas das microalgas, fazendo com que carboidratos sejam acumulados na forma de energia, possibilitando uma melhor produtividade. Além disso, coprodutos de alto valor podem ser produzidos para melhorar a economia das biorrefinarias de microalgas. Exemplos desses produtos são os biossurfactantes. Objetivou-se aumentar a síntese de carboidratos e biossurfactantes extracelulares da microalga Spirulina platensis a partir de estresses nutricionais e físicos. A microalga foi cultivada em dois estágios. No primeiro estágio foi utilizado meio rico em nutrientes (Zarrouk 50%), possibilitando o crescimento da cianobactéria até o final da fase exponencial de crescimento (18° d). Para o segundo estágio, as células cultivadas foram centrifugadas e recicladas em novo meio de cultivo (Zarrouk 20%), realizando-se então a aplicação de estresses físicos (radiação UV, fotoperíodo/luminosidade, NaCl, peróxido de hidrogênio) e nutricionais (limitação e suplementação das concentrações de Ca, Fe e Mg no Zarrouk 20%). Todas as condições de estresse foram realizadas em três níveis de concentração e em duplicata, ao longo de 15 d (Estágio II). Ao final dos cultivos, foram realizadas determinações da produção intracelular de carboidratos, proteínas e biossurfactantes extracelulares. Os melhores resultados foram então selecionados para uma etapa posterior de combinação de estresses. Para isso, um delineamento fatorial 2² foi realizado. Os estresses com as maiores produtividades de carboidratos na primeira etapa do estudo com cultivos em dois estágios foram o NaCl 300 mM (10,27 mg.L-1.d-1), radiação UV 6 min (9,80 mg.L-1.d-1), limitação de Mg 0,01 g.L-1 (9,75 mg.L-1.d-1) e fotoperíodo de 18h/06h claro/escuro com intensidade luminosa de 67,5 -mol fótons m-2.s-1 (27,84 mg.L-1.d-1). A quantificação de biossurfactantes a partir da redução das tensões superficiais foi identificada para todos os cultivos submetidos a suplementação de cálcio. A formação de emulsões estáveis foi verificada apenas nas condições de estresse por fotoperíodo/intensidade luminosa. A limitação de nutrientes por meio Zarrouk 20%, combinada com maiores intensidades de luz e fotoperíodo demonstrou ser uma estratégia eficiente para atingir maiores concentrações intracelulares (59,71%) e produtividades de carboidratos (55,85 mg.L-1.d-1) em um único estágio de cultivo.Submitted by Aline Rezende (alinerezende@upf.br) on 2019-07-08T11:54:35Z No. of bitstreams: 1 2019MuniseZaparoli.pdf: 1082406 bytes, checksum: 1d6a98319ceebac360c3749d0551e6f6 (MD5)Made available in DSpace on 2019-07-08T11:54:35Z (GMT). No. of bitstreams: 1 2019MuniseZaparoli.pdf: 1082406 bytes, checksum: 1d6a98319ceebac360c3749d0551e6f6 (MD5) Previous issue date: 2019-03-15application/pdfporUniversidade de Passo FundoPrograma de Pós-Graduação em Engenharia Civil e AmbientalUPFBrasilFaculdade de Engenharia e Arquitetura – FEARBiocombustíveisAlgaBiomassaSpirulinaENGENHARIAS::ENGENHARIA CIVILEstresse celular para a produção de biocompostos em Spirulina platensisCellular stress for the production of compounds in Spirulina platensisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-41729612957170071185005006008147033241558623806-6274833215046395772info:eu-repo/semantics/openAccessreponame:Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF)instname:Universidade de Passo Fundo (UPF)instacron:UPFORIGINAL2019MuniseZaparoli.pdf2019MuniseZaparoli.pdfapplication/pdf1082406http://tede.upf.br:8080/jspui/bitstream/tede/1728/2/2019MuniseZaparoli.pdf1d6a98319ceebac360c3749d0551e6f6MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.upf.br:8080/jspui/bitstream/tede/1728/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/17282020-09-11 14:45:16.892oai:tede.upf.br:tede/1728Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e DissertaçõesPUBhttp://tede.upf.br/oai/requestbiblio@upf.br || bio@upf.br || cas@upf.br || car@upf.br || lve@upf.br || sar@upf.br || sol@upf.br || upfmundi@upf.br || jucelei@upf.bropendoar:2020-09-11T17:45:16Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) - Universidade de Passo Fundo (UPF)false |
dc.title.por.fl_str_mv |
Estresse celular para a produção de biocompostos em Spirulina platensis |
dc.title.alternative.eng.fl_str_mv |
Cellular stress for the production of compounds in Spirulina platensis |
title |
Estresse celular para a produção de biocompostos em Spirulina platensis |
spellingShingle |
Estresse celular para a produção de biocompostos em Spirulina platensis Zaparoli, Munise Biocombustíveis Alga Biomassa Spirulina ENGENHARIAS::ENGENHARIA CIVIL |
title_short |
Estresse celular para a produção de biocompostos em Spirulina platensis |
title_full |
Estresse celular para a produção de biocompostos em Spirulina platensis |
title_fullStr |
Estresse celular para a produção de biocompostos em Spirulina platensis |
title_full_unstemmed |
Estresse celular para a produção de biocompostos em Spirulina platensis |
title_sort |
Estresse celular para a produção de biocompostos em Spirulina platensis |
author |
Zaparoli, Munise |
author_facet |
Zaparoli, Munise |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Colla, Luciane Maria |
dc.contributor.advisor1ID.fl_str_mv |
02309369977 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4804304036455640 |
dc.contributor.authorID.fl_str_mv |
03038839019 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1159754790899932 |
dc.contributor.author.fl_str_mv |
Zaparoli, Munise |
contributor_str_mv |
Colla, Luciane Maria |
dc.subject.por.fl_str_mv |
Biocombustíveis Alga Biomassa Spirulina |
topic |
Biocombustíveis Alga Biomassa Spirulina ENGENHARIAS::ENGENHARIA CIVIL |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA CIVIL |
description |
The production of renewable biofuel in microalgae based biorefinery have receive attention as potential energy sources for the future. The need to replace the energy matrix and reduce impacts of non-renewable raw materials on global warming and climate change increase the necessity of new renewable fuels. Studies have been conducted with microalgae due to their short growing time, plus they are abundant raw materials and use as growth energy CO2 (greenhouse gas) and solar energy. The microalgae biomass can easily accumulate intracellular carbohydrates, which can be used in bioethanol production, biokeresone, biogas, and other biofuels. The stimulation of environmental and nutritional stress allows changes in the microalgae metabolic routes, causing carbohydrates to accumulate in energy form, increasing productivity. Also, high-value coproducts can be created to increase the economical level of microalgae biorefineries, such as biosurfactants. This study goal is to increase the synthesis of extracellular carbohydrates and biosurfactants from the Spirulina platensis by nutritional and physical stresses. Spirulina platensis was cultivated in two steps. In the first step, nutrient -rich medium (50% Zarrouk‟s medium ) was used, allowing cyanobacteria growth until the end of the exponential growth phase (18° d). In the second step, the gowned cells were centrifuged and recycled in a new growth medium (20% Zarrouk‟s medium), and subjected to physical stresses (UV radiation, photoperiod/luminosity, NaCl, hydrogen peroxide), nutritional stresses (shortage or enrichment of Ca, Fe and Mg concentrations in 20% Zarrouk‟s medium ). All stress conditions were performed in duplicate and with three concentration levels over 15 days (Stage II). At the end, intracellular production of carbohydrates, proteins and extracellular biosurfactants were analyzed. The best results were selected for a combining stress approach. Therefore, a 2 2 factorial design was made. The stresses with the highest carbohydrate productivities in the first stage of the two stage culture study was 300 mM NaCl (10.27 mg.L -1 .d -1 ), with UV radiation 6 min (9.80 mg.L -1 .d -1 ), Mg 0.01 g.L -1 (9.75 mg.L -1 .d -1 ) and 18h/06h photoperiod of 67.5 μmol photons m -2 .s -1 (27.84 mg.L -1 d -1 ). The biosurfactants quantification from the reduction of surface tensions was identified in all the calcium supplementation cultures. The development of stable emulsions was only verified under photoperiod/light intensity stress conditions. The nutrient restriction by 20% Zarrouk‟s medium , combined with higher light intensity and photoperiod shown to be an efficient strategy to achieve higher intracellular concentrations (59 .71%) and carbohydrate productivities (55.85 mg.L -1 .d -1 ) in a single cultivation stage. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-07-08T11:54:35Z |
dc.date.issued.fl_str_mv |
2019-03-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ZAPAROLI, Munise. Estresse celular para a produção de biocompostos em Spirulina platensis. 2019. 84f. . Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2019. |
dc.identifier.uri.fl_str_mv |
http://tede.upf.br:8080/jspui/handle/tede/1728 |
identifier_str_mv |
ZAPAROLI, Munise. Estresse celular para a produção de biocompostos em Spirulina platensis. 2019. 84f. . Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2019. |
url |
http://tede.upf.br:8080/jspui/handle/tede/1728 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-4172961295717007118 |
dc.relation.confidence.fl_str_mv |
500 500 600 |
dc.relation.department.fl_str_mv |
8147033241558623806 |
dc.relation.cnpq.fl_str_mv |
-6274833215046395772 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Passo Fundo |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Civil e Ambiental |
dc.publisher.initials.fl_str_mv |
UPF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Faculdade de Engenharia e Arquitetura – FEAR |
publisher.none.fl_str_mv |
Universidade de Passo Fundo |
dc.source.none.fl_str_mv |
reponame:Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) instname:Universidade de Passo Fundo (UPF) instacron:UPF |
instname_str |
Universidade de Passo Fundo (UPF) |
instacron_str |
UPF |
institution |
UPF |
reponame_str |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
collection |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
bitstream.url.fl_str_mv |
http://tede.upf.br:8080/jspui/bitstream/tede/1728/2/2019MuniseZaparoli.pdf http://tede.upf.br:8080/jspui/bitstream/tede/1728/1/license.txt |
bitstream.checksum.fl_str_mv |
1d6a98319ceebac360c3749d0551e6f6 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) - Universidade de Passo Fundo (UPF) |
repository.mail.fl_str_mv |
biblio@upf.br || bio@upf.br || cas@upf.br || car@upf.br || lve@upf.br || sar@upf.br || sol@upf.br || upfmundi@upf.br || jucelei@upf.br |
_version_ |
1809092294088851456 |