Machine learning para previsão de preços em high-frequency trading.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do Mackenzie |
Texto Completo: | https://dspace.mackenzie.br/handle/10899/32811 |
Resumo: | TCC |
id |
UPM_4a79cc54d59e2cad39fe35153c25e083 |
---|---|
oai_identifier_str |
oai:dspace.mackenzie.br:10899/32811 |
network_acronym_str |
UPM |
network_name_str |
Biblioteca Digital de Teses e Dissertações do Mackenzie |
repository_id_str |
10277 |
spelling |
Marco, Acácio BonifácioOliveira, Rogério2023-07-03T14:08:35Z2023-07-03T14:08:35Z2023-06-16TCCThis study utilizes the Deep Learning LSTM technique in conjunction with data filtering techniques such as the Percentile Method and the Hampel Filter to enhance high-frequency stock price prediction. The results show that LSTM models are capable of capturing patterns and trends in price data, and the inclusion of indicators such as Bollinger Bands and Order Flow Imbalance does not demonstrate significant differences in the results. The tested configurations yielded similar results, indicating the accuracy of LSTM models in high-frequency price prediction.Este estudo utiliza a técnica de Deep Learning LSTM em conjunto com técnicas de filtragem de dados, como o Método Percentil e o Filtro de Hampel, para aprimorar a previsão de preços de ações em alta frequência. Os resultados mostram que os modelos LSTM são capazes de capturar padrões e tendências nos dados de preços, e a inclusão de indicadores como Bandas de Bollinger e Order Flow Imbalance não demonstra diferenças significativas nos resultados. As configurações testadas apresentaram resultados próximos, indicando a precisão dos modelos LSTM na previsão de preços em alta frequência.https://dspace.mackenzie.br/handle/10899/32811Universidade Presbiteriana MackenzieFaculdade de Computação e Informática (FCI)Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessdeep learninglstmhftprevisão de preçoindicadoresMachine learning para previsão de preços em high-frequency trading.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Biblioteca Digital de Teses e Dissertações do Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIEORIGINAL1195-Artigo Final-5404-1-4-20230616 (1).pdf1195-Artigo Final-5404-1-4-20230616 (1).pdfAcácio Bonifácio de Marcoapplication/pdf1497098https://dspace.mackenzie.br/bitstreams/877809d8-d00b-4915-aa39-41229dbdaa8b/download245e3d0590298e8bfb18da8252ae91caMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://dspace.mackenzie.br/bitstreams/4cc037f1-5381-4a9c-9a05-9030aeb96d38/downloade39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81997https://dspace.mackenzie.br/bitstreams/1f6f0057-88a8-4677-97fb-7bf32f2b9f8a/downloadfb735e1a8fa1feda568f1b61905f8d57MD53TEXT1195-Artigo Final-5404-1-4-20230616 (1).pdf.txt1195-Artigo Final-5404-1-4-20230616 (1).pdf.txtExtracted texttext/plain36662https://dspace.mackenzie.br/bitstreams/373a8bff-96c4-4272-9af6-e614a7eaaef6/download265207ab50977620e1c2e5718e8f86b8MD54THUMBNAIL1195-Artigo Final-5404-1-4-20230616 (1).pdf.jpg1195-Artigo Final-5404-1-4-20230616 (1).pdf.jpgGenerated Thumbnailimage/jpeg1594https://dspace.mackenzie.br/bitstreams/a7781ae3-4044-4439-9588-b75b0504aab6/downloadc0b9ba3ecf176a147a75c817917707f6MD5510899/328112023-07-04 02:03:20.737http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Braziloai:dspace.mackenzie.br:10899/32811https://dspace.mackenzie.brBiblioteca Digital de Teses e Dissertaçõeshttp://tede.mackenzie.br/jspui/PRIhttps://adelpha-api.mackenzie.br/server/oai/repositorio@mackenzie.br||paola.damato@mackenzie.bropendoar:102772023-07-04T02:03:20Biblioteca Digital de Teses e Dissertações do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBzZXUgdHJhYmFsaG8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBQcmVzYml0ZXJpYW5hIE1hY2tlbnppZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgbyBzZXUgdHJhYmFsaG8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBQcmVzYml0ZXJpYW5hIE1hY2tlbnppZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZG8gc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkbyBzZXUgdHJhYmFsaG8gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc2V1IHRyYWJhbGhvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmFyIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIG9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZG8gc2V1IHRyYWJhbGhvIG9yYSBkZXBvc2l0YWRvLgoKQ0FTTyBPIFRSQUJBTEhPIE9SQSBERVBPU0lUQURPIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVU5JVkVSU0lEQURFIFBSRVNCSVRFUklBTkEgTUFDS0VOWklFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHNldSB0cmFiYWxobywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.pt_BR.fl_str_mv |
Machine learning para previsão de preços em high-frequency trading. |
title |
Machine learning para previsão de preços em high-frequency trading. |
spellingShingle |
Machine learning para previsão de preços em high-frequency trading. Marco, Acácio Bonifácio deep learning lstm hft previsão de preço indicadores |
title_short |
Machine learning para previsão de preços em high-frequency trading. |
title_full |
Machine learning para previsão de preços em high-frequency trading. |
title_fullStr |
Machine learning para previsão de preços em high-frequency trading. |
title_full_unstemmed |
Machine learning para previsão de preços em high-frequency trading. |
title_sort |
Machine learning para previsão de preços em high-frequency trading. |
author |
Marco, Acácio Bonifácio |
author_facet |
Marco, Acácio Bonifácio |
author_role |
author |
dc.contributor.author.fl_str_mv |
Marco, Acácio Bonifácio |
dc.contributor.advisor1.fl_str_mv |
Oliveira, Rogério |
contributor_str_mv |
Oliveira, Rogério |
dc.subject.por.fl_str_mv |
deep learning lstm hft previsão de preço indicadores |
topic |
deep learning lstm hft previsão de preço indicadores |
description |
TCC |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-07-03T14:08:35Z |
dc.date.available.fl_str_mv |
2023-07-03T14:08:35Z |
dc.date.issued.fl_str_mv |
2023-06-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://dspace.mackenzie.br/handle/10899/32811 |
url |
https://dspace.mackenzie.br/handle/10899/32811 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Presbiteriana Mackenzie |
dc.publisher.department.fl_str_mv |
Faculdade de Computação e Informática (FCI) |
publisher.none.fl_str_mv |
Universidade Presbiteriana Mackenzie |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do Mackenzie instname:Universidade Presbiteriana Mackenzie (MACKENZIE) instacron:MACKENZIE |
instname_str |
Universidade Presbiteriana Mackenzie (MACKENZIE) |
instacron_str |
MACKENZIE |
institution |
MACKENZIE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do Mackenzie |
collection |
Biblioteca Digital de Teses e Dissertações do Mackenzie |
bitstream.url.fl_str_mv |
https://dspace.mackenzie.br/bitstreams/877809d8-d00b-4915-aa39-41229dbdaa8b/download https://dspace.mackenzie.br/bitstreams/4cc037f1-5381-4a9c-9a05-9030aeb96d38/download https://dspace.mackenzie.br/bitstreams/1f6f0057-88a8-4677-97fb-7bf32f2b9f8a/download https://dspace.mackenzie.br/bitstreams/373a8bff-96c4-4272-9af6-e614a7eaaef6/download https://dspace.mackenzie.br/bitstreams/a7781ae3-4044-4439-9588-b75b0504aab6/download |
bitstream.checksum.fl_str_mv |
245e3d0590298e8bfb18da8252ae91ca e39d27027a6cc9cb039ad269a5db8e34 fb735e1a8fa1feda568f1b61905f8d57 265207ab50977620e1c2e5718e8f86b8 c0b9ba3ecf176a147a75c817917707f6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE) |
repository.mail.fl_str_mv |
repositorio@mackenzie.br||paola.damato@mackenzie.br |
_version_ |
1813820061615390720 |