Machine learning para previsão de preços em high-frequency trading.

Detalhes bibliográficos
Autor(a) principal: Marco, Acácio Bonifácio
Data de Publicação: 2023
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do Mackenzie
Texto Completo: https://dspace.mackenzie.br/handle/10899/32811
Resumo: TCC
id UPM_4a79cc54d59e2cad39fe35153c25e083
oai_identifier_str oai:dspace.mackenzie.br:10899/32811
network_acronym_str UPM
network_name_str Biblioteca Digital de Teses e Dissertações do Mackenzie
repository_id_str 10277
spelling Marco, Acácio BonifácioOliveira, Rogério2023-07-03T14:08:35Z2023-07-03T14:08:35Z2023-06-16TCCThis study utilizes the Deep Learning LSTM technique in conjunction with data filtering techniques such as the Percentile Method and the Hampel Filter to enhance high-frequency stock price prediction. The results show that LSTM models are capable of capturing patterns and trends in price data, and the inclusion of indicators such as Bollinger Bands and Order Flow Imbalance does not demonstrate significant differences in the results. The tested configurations yielded similar results, indicating the accuracy of LSTM models in high-frequency price prediction.Este estudo utiliza a técnica de Deep Learning LSTM em conjunto com técnicas de filtragem de dados, como o Método Percentil e o Filtro de Hampel, para aprimorar a previsão de preços de ações em alta frequência. Os resultados mostram que os modelos LSTM são capazes de capturar padrões e tendências nos dados de preços, e a inclusão de indicadores como Bandas de Bollinger e Order Flow Imbalance não demonstra diferenças significativas nos resultados. As configurações testadas apresentaram resultados próximos, indicando a precisão dos modelos LSTM na previsão de preços em alta frequência.https://dspace.mackenzie.br/handle/10899/32811Universidade Presbiteriana MackenzieFaculdade de Computação e Informática (FCI)Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessdeep learninglstmhftprevisão de preçoindicadoresMachine learning para previsão de preços em high-frequency trading.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Biblioteca Digital de Teses e Dissertações do Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIEORIGINAL1195-Artigo Final-5404-1-4-20230616 (1).pdf1195-Artigo Final-5404-1-4-20230616 (1).pdfAcácio Bonifácio de Marcoapplication/pdf1497098https://dspace.mackenzie.br/bitstreams/877809d8-d00b-4915-aa39-41229dbdaa8b/download245e3d0590298e8bfb18da8252ae91caMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://dspace.mackenzie.br/bitstreams/4cc037f1-5381-4a9c-9a05-9030aeb96d38/downloade39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81997https://dspace.mackenzie.br/bitstreams/1f6f0057-88a8-4677-97fb-7bf32f2b9f8a/downloadfb735e1a8fa1feda568f1b61905f8d57MD53TEXT1195-Artigo Final-5404-1-4-20230616 (1).pdf.txt1195-Artigo Final-5404-1-4-20230616 (1).pdf.txtExtracted texttext/plain36662https://dspace.mackenzie.br/bitstreams/373a8bff-96c4-4272-9af6-e614a7eaaef6/download265207ab50977620e1c2e5718e8f86b8MD54THUMBNAIL1195-Artigo Final-5404-1-4-20230616 (1).pdf.jpg1195-Artigo Final-5404-1-4-20230616 (1).pdf.jpgGenerated Thumbnailimage/jpeg1594https://dspace.mackenzie.br/bitstreams/a7781ae3-4044-4439-9588-b75b0504aab6/downloadc0b9ba3ecf176a147a75c817917707f6MD5510899/328112023-07-04 02:03:20.737http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Braziloai:dspace.mackenzie.br:10899/32811https://dspace.mackenzie.brBiblioteca Digital de Teses e Dissertaçõeshttp://tede.mackenzie.br/jspui/PRIhttps://adelpha-api.mackenzie.br/server/oai/repositorio@mackenzie.br||paola.damato@mackenzie.bropendoar:102772023-07-04T02:03:20Biblioteca Digital de Teses e Dissertações do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBzZXUgdHJhYmFsaG8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBQcmVzYml0ZXJpYW5hIE1hY2tlbnppZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgbyBzZXUgdHJhYmFsaG8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBQcmVzYml0ZXJpYW5hIE1hY2tlbnppZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZG8gc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkbyBzZXUgdHJhYmFsaG8gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc2V1IHRyYWJhbGhvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmFyIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIG9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZG8gc2V1IHRyYWJhbGhvIG9yYSBkZXBvc2l0YWRvLgoKQ0FTTyBPIFRSQUJBTEhPIE9SQSBERVBPU0lUQURPIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVU5JVkVSU0lEQURFIFBSRVNCSVRFUklBTkEgTUFDS0VOWklFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHNldSB0cmFiYWxobywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.pt_BR.fl_str_mv Machine learning para previsão de preços em high-frequency trading.
title Machine learning para previsão de preços em high-frequency trading.
spellingShingle Machine learning para previsão de preços em high-frequency trading.
Marco, Acácio Bonifácio
deep learning
lstm
hft
previsão de preço
indicadores
title_short Machine learning para previsão de preços em high-frequency trading.
title_full Machine learning para previsão de preços em high-frequency trading.
title_fullStr Machine learning para previsão de preços em high-frequency trading.
title_full_unstemmed Machine learning para previsão de preços em high-frequency trading.
title_sort Machine learning para previsão de preços em high-frequency trading.
author Marco, Acácio Bonifácio
author_facet Marco, Acácio Bonifácio
author_role author
dc.contributor.author.fl_str_mv Marco, Acácio Bonifácio
dc.contributor.advisor1.fl_str_mv Oliveira, Rogério
contributor_str_mv Oliveira, Rogério
dc.subject.por.fl_str_mv deep learning
lstm
hft
previsão de preço
indicadores
topic deep learning
lstm
hft
previsão de preço
indicadores
description TCC
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-07-03T14:08:35Z
dc.date.available.fl_str_mv 2023-07-03T14:08:35Z
dc.date.issued.fl_str_mv 2023-06-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://dspace.mackenzie.br/handle/10899/32811
url https://dspace.mackenzie.br/handle/10899/32811
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Presbiteriana Mackenzie
dc.publisher.department.fl_str_mv Faculdade de Computação e Informática (FCI)
publisher.none.fl_str_mv Universidade Presbiteriana Mackenzie
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do Mackenzie
instname:Universidade Presbiteriana Mackenzie (MACKENZIE)
instacron:MACKENZIE
instname_str Universidade Presbiteriana Mackenzie (MACKENZIE)
instacron_str MACKENZIE
institution MACKENZIE
reponame_str Biblioteca Digital de Teses e Dissertações do Mackenzie
collection Biblioteca Digital de Teses e Dissertações do Mackenzie
bitstream.url.fl_str_mv https://dspace.mackenzie.br/bitstreams/877809d8-d00b-4915-aa39-41229dbdaa8b/download
https://dspace.mackenzie.br/bitstreams/4cc037f1-5381-4a9c-9a05-9030aeb96d38/download
https://dspace.mackenzie.br/bitstreams/1f6f0057-88a8-4677-97fb-7bf32f2b9f8a/download
https://dspace.mackenzie.br/bitstreams/373a8bff-96c4-4272-9af6-e614a7eaaef6/download
https://dspace.mackenzie.br/bitstreams/a7781ae3-4044-4439-9588-b75b0504aab6/download
bitstream.checksum.fl_str_mv 245e3d0590298e8bfb18da8252ae91ca
e39d27027a6cc9cb039ad269a5db8e34
fb735e1a8fa1feda568f1b61905f8d57
265207ab50977620e1c2e5718e8f86b8
c0b9ba3ecf176a147a75c817917707f6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)
repository.mail.fl_str_mv repositorio@mackenzie.br||paola.damato@mackenzie.br
_version_ 1813820061615390720