Métodos de classificação de imagens de satélite para delineamento de banhados

Detalhes bibliográficos
Autor(a) principal: Simioni, João Paulo Delapasse
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/222604
Resumo: As Áreas Úmidas (AUs) são ecossistemas de importância global, que apresentam altos níveis de diversidade ecológica e produtividade primária e secundária. Os Banhados são um tipo de AU, característicos nos estados do Sul do Brasil, no Uruguai e na Argentina. O delineamento e classificação desses ecossistemas é uma tarefa árdua, dada as características estruturais hidrológicas, de solos, de cobertura vegetal e espectrais. No estado Rio Grande do Sul os Banhados são considerados Áreas de Preservação Permanente, porém, não há um inventário e tampouco um delineamento desses ambientes. Deste modo, o objetivo destatese é comparar diferentes métodos baseados em sensoriamento remoto ativo e passivo e aprendizado de máquina(AP)para o delineamento de Banhados. Para isto, utilizamos três abordagens: i) aplicação de índices espectrais de sensoriamento remoto e árvore de decisão; ii) integração de imagens SAR de dupla e quádrupla polarização em bandas C e L e árvore de decisão; e, iii) análise multisensor (ativo e passivo), Geobia e diferentes classificadores. Nossos resultados mostram que os índices espectrais de sensoriamento remoto apresentaram acurácias entre 77,9% e 95,9%; a aplicação de imagens SAR resultou em acurácias entre 56,1% e 72,9%, ambos pelo algoritmo Árvore de Decisão. Para a abordagem multisensor utilizando Geobia e diferentes classificadores, as acurácias variaram entre 95,5% e 98,5%, sendo que, o k-NN foi o algoritmo que apresentou maior acurácia entre os modelos avaliados, demonstrando o potencial da análise multisensor (ativo e passivo) e doaprendizado de máquinapara o delineamento e classificação de Banhados. Adotamos como estudo de caso um Banhado localizado no Sul do Brasil, porém recomendamos que devido as semelhanças hidrológicas, estruturais e espectrais desses ambientes, essas metodologias possam ser aplicadas em outras áreas de Banhados (marshes).
id URGS_0457ef2b0732c231b7a11c738a9ed4b9
oai_identifier_str oai:www.lume.ufrgs.br:10183/222604
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Simioni, João Paulo DelapasseGuasselli, Laurindo Antônio2021-06-22T04:26:21Z2021http://hdl.handle.net/10183/222604001127156As Áreas Úmidas (AUs) são ecossistemas de importância global, que apresentam altos níveis de diversidade ecológica e produtividade primária e secundária. Os Banhados são um tipo de AU, característicos nos estados do Sul do Brasil, no Uruguai e na Argentina. O delineamento e classificação desses ecossistemas é uma tarefa árdua, dada as características estruturais hidrológicas, de solos, de cobertura vegetal e espectrais. No estado Rio Grande do Sul os Banhados são considerados Áreas de Preservação Permanente, porém, não há um inventário e tampouco um delineamento desses ambientes. Deste modo, o objetivo destatese é comparar diferentes métodos baseados em sensoriamento remoto ativo e passivo e aprendizado de máquina(AP)para o delineamento de Banhados. Para isto, utilizamos três abordagens: i) aplicação de índices espectrais de sensoriamento remoto e árvore de decisão; ii) integração de imagens SAR de dupla e quádrupla polarização em bandas C e L e árvore de decisão; e, iii) análise multisensor (ativo e passivo), Geobia e diferentes classificadores. Nossos resultados mostram que os índices espectrais de sensoriamento remoto apresentaram acurácias entre 77,9% e 95,9%; a aplicação de imagens SAR resultou em acurácias entre 56,1% e 72,9%, ambos pelo algoritmo Árvore de Decisão. Para a abordagem multisensor utilizando Geobia e diferentes classificadores, as acurácias variaram entre 95,5% e 98,5%, sendo que, o k-NN foi o algoritmo que apresentou maior acurácia entre os modelos avaliados, demonstrando o potencial da análise multisensor (ativo e passivo) e doaprendizado de máquinapara o delineamento e classificação de Banhados. Adotamos como estudo de caso um Banhado localizado no Sul do Brasil, porém recomendamos que devido as semelhanças hidrológicas, estruturais e espectrais desses ambientes, essas metodologias possam ser aplicadas em outras áreas de Banhados (marshes).Wetlands are ecosystems of global importance, with high levels of ecological diversity and primary and secondary productivity.Marshes are a type of wetland characteristic of the southernBrazil, Uruguay and Argentina.The delineationand classification of these ecosystems is an arduous task, given the hydrological structure, soil, vegetation and spectral characteristics.In the Rio Grande do Sul state, marshesare considered Permanent Preservation Areas, however, there is no inventory and no delineationof these environments.Thus, the aim of this thesis is to compare different active and passive remote sensing based methodsand machine learningfor the delineationof marshes. For this, we use three approaches: i) application of spectral indices of remote sensing and decision tree; ii) integration of dual and quad-poll SAR images in C and L-bands and decision tree, and iii) multisensor analysis (active and passive), Geobia and different classification methods. Our results show that the spectral indexes of remote sensing presented accuracy between 77.9% and 95.9%; the application of SAR images resulted in accuracy between 56.1% and 72.9%, both using the Decision Tree algorithm. For the multisensor approach using Geobia and different classifiers, the accuracy varied between 95.5% to 98.5%, k-NN was the algorithm that showed greater accuracy among the models evaluated, demonstrating the potential of the multisensor analysis (activeand passive) and machine learningfor marshesdelineation and classification. Our study was carried out in a marsh located in the southernBrazil, however due to the hydrological, structural and spectral similarities of these environments, the methodologies can be applied in other marshes areasapplication/pdfporSensoriamento remotoAprendizado de máquinaÁreas úmidasWetlandsGEOBIAMachine learningDelineationMétodos de classificação de imagens de satélite para delineamento de banhadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulCentro Estadual de Pesquisas em Sensoriamento Remoto e MeteorologiaPrograma de Pós-Graduação em Sensoriamento RemotoPorto Alegre, BR-RS2021doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001127156.pdf.txt001127156.pdf.txtExtracted Texttext/plain314151http://www.lume.ufrgs.br/bitstream/10183/222604/2/001127156.pdf.txt6f29f2dab2dd69f01606079563fd484bMD52ORIGINAL001127156.pdfTexto completoapplication/pdf10005324http://www.lume.ufrgs.br/bitstream/10183/222604/1/001127156.pdf286095dcfe2da837bb2e25c776ec79fcMD5110183/2226042021-06-26 04:48:25.941598oai:www.lume.ufrgs.br:10183/222604Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-06-26T07:48:25Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Métodos de classificação de imagens de satélite para delineamento de banhados
title Métodos de classificação de imagens de satélite para delineamento de banhados
spellingShingle Métodos de classificação de imagens de satélite para delineamento de banhados
Simioni, João Paulo Delapasse
Sensoriamento remoto
Aprendizado de máquina
Áreas úmidas
Wetlands
GEOBIA
Machine learning
Delineation
title_short Métodos de classificação de imagens de satélite para delineamento de banhados
title_full Métodos de classificação de imagens de satélite para delineamento de banhados
title_fullStr Métodos de classificação de imagens de satélite para delineamento de banhados
title_full_unstemmed Métodos de classificação de imagens de satélite para delineamento de banhados
title_sort Métodos de classificação de imagens de satélite para delineamento de banhados
author Simioni, João Paulo Delapasse
author_facet Simioni, João Paulo Delapasse
author_role author
dc.contributor.author.fl_str_mv Simioni, João Paulo Delapasse
dc.contributor.advisor1.fl_str_mv Guasselli, Laurindo Antônio
contributor_str_mv Guasselli, Laurindo Antônio
dc.subject.por.fl_str_mv Sensoriamento remoto
Aprendizado de máquina
Áreas úmidas
topic Sensoriamento remoto
Aprendizado de máquina
Áreas úmidas
Wetlands
GEOBIA
Machine learning
Delineation
dc.subject.eng.fl_str_mv Wetlands
GEOBIA
Machine learning
Delineation
description As Áreas Úmidas (AUs) são ecossistemas de importância global, que apresentam altos níveis de diversidade ecológica e produtividade primária e secundária. Os Banhados são um tipo de AU, característicos nos estados do Sul do Brasil, no Uruguai e na Argentina. O delineamento e classificação desses ecossistemas é uma tarefa árdua, dada as características estruturais hidrológicas, de solos, de cobertura vegetal e espectrais. No estado Rio Grande do Sul os Banhados são considerados Áreas de Preservação Permanente, porém, não há um inventário e tampouco um delineamento desses ambientes. Deste modo, o objetivo destatese é comparar diferentes métodos baseados em sensoriamento remoto ativo e passivo e aprendizado de máquina(AP)para o delineamento de Banhados. Para isto, utilizamos três abordagens: i) aplicação de índices espectrais de sensoriamento remoto e árvore de decisão; ii) integração de imagens SAR de dupla e quádrupla polarização em bandas C e L e árvore de decisão; e, iii) análise multisensor (ativo e passivo), Geobia e diferentes classificadores. Nossos resultados mostram que os índices espectrais de sensoriamento remoto apresentaram acurácias entre 77,9% e 95,9%; a aplicação de imagens SAR resultou em acurácias entre 56,1% e 72,9%, ambos pelo algoritmo Árvore de Decisão. Para a abordagem multisensor utilizando Geobia e diferentes classificadores, as acurácias variaram entre 95,5% e 98,5%, sendo que, o k-NN foi o algoritmo que apresentou maior acurácia entre os modelos avaliados, demonstrando o potencial da análise multisensor (ativo e passivo) e doaprendizado de máquinapara o delineamento e classificação de Banhados. Adotamos como estudo de caso um Banhado localizado no Sul do Brasil, porém recomendamos que devido as semelhanças hidrológicas, estruturais e espectrais desses ambientes, essas metodologias possam ser aplicadas em outras áreas de Banhados (marshes).
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-06-22T04:26:21Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/222604
dc.identifier.nrb.pt_BR.fl_str_mv 001127156
url http://hdl.handle.net/10183/222604
identifier_str_mv 001127156
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/222604/2/001127156.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/222604/1/001127156.pdf
bitstream.checksum.fl_str_mv 6f29f2dab2dd69f01606079563fd484b
286095dcfe2da837bb2e25c776ec79fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1816737034647109632