Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna

Detalhes bibliográficos
Autor(a) principal: Biolchi, Vanderlei
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/26882
Resumo: Introdução. O câncer de próstata (CaP) é o mais comum em homens nos Estados Unidos. Em 2010, formam estimados 192.280 novos casos de CaP e 27.360 mortes nos Estados Unidos. A incidência estimada de CaP no Brasil é de 52.350 novos casos em 2010, principalmente na região sul. A hiperplasia prostática benigna (HPB) é uma anormalidade proliferativa associada à idade em homens. A prevalência de HPB é em torno de 14% entre 40 e 50 anos e 43% acima de 60 anos. A patogênese do desenvolvimento tumoral tem sido associada com a ação dos hormônios esteróides. Os efeitos dos androgênios são mediados pela testosterona e pela dihidrotestosterona (DHT) nas células alvo. Suas ações têm sido demonstradas na morfogênese, diferenciação, proliferação e secreção da glândula prostática. A ligação do androgênio promove a ativação do receptor de androgênio (AR), recrutamento de cofatores, promovendo a transcrição dos genes alvos hormônio-dependentes. Numerosos correguladores do AR têm sido descritos como sendo essenciais para a ativação do AR durante a progressão da doença. SHP, FHL2 e o complexo P160 (SRC1, GRIP1 e AIB1) parecem ser importantes correguladores do AR. O polimorfismo CAG e GGC do AR pode alterar a transcrição dos genes responsivos aos androgênios e, potencialmente, atuar no desenvolvimento da HPB e do CaP. Objetivo. 1. Investigar a associação entre o número de repetições CAG e GGC do AR, os níveis de testosterona e a chance de desenvolver CaP ou HPB em nossa população. 2. Investigar a expressão de SHP, FHL2, do complexo P160 e do AR em tecidos HPB, CaP e ZPU (zona periuretral proveniente das amostras CaP). Materiais e Métodos. Foram analisados 344 pacientes oriundos do Hospital de Clínicas de Porto Alegre, sendo 130 CaP, 126 HPB e 88 controles, para analisar o polimorfismo CAG e GGC. O DNA foi extraído a partir do sangue periférico e o gene do AR foi analisado através de análise de fragmento. Cento e dois pacientes submetidos à cirurgia foram utilizados para avaliar as expressões gênicas. Foram avaliados 36 HPB, 66 CaP e 33 ZPU. O RNA foi extraído e as expressões gênicas foram analisadas por PCR em tempo real. Os protocolos e os termos de consentimento foram aprovados pelo comitê de ética local e nacional. Resultados. As médias do número de repetições CAG e GGC foram semelhantes entre os grupos CaP, HPB e controles. A chance de desenvolver CaP nos indivíduos que possuem um longo alelo para o polimorfismo GGC (GGC > 18 e GGC >19) é de 1,96 e 3,30 vezes maior do que o alelo curto (GGC ≤ 18 e GGC ≤ 19) (p=0,035 e p=0,007), respectivamente. A chance de desenvolver HPB em indivíduos que possuem o alelo longo para o polimorfismo GGC (GGC > 18) é 2,33 vezes maior (p=0,008) do que o alelo curto (GGC ≤ 18). O risco de desenvolver CaP e HPB em pacientes com a testosterona total < 4ng/mL foram de 2,80 (P=0,005) e 2,78 vezes maior (P=0,002), respectivamente, comparado com os pacientes com testosterona total > 4ng/mL. Os níveis séricos de testosterona total em pacientes com GGC > 19 foram significativamente menor comparados com pacientes com GGC ≤ 19 (P=0,001). A expressão gênica de AR foi maior no grupo ZPU e CaP em relação ao grupo HPB (P=0,033 e P<0.001, respectivamente). A expressão de SHP foi maior no grupo CaP comparado com o HPB (P=0,039). A expressão de FHL2 foi maior no grupo ZPU comparado com o CaP e HPB (P<0.001 e P=0.007, respectivamente). Dos genes que formam o complexo P160, a expressão de SRC1 foi maior no grupo ZPU comparado com o CaP (P<0.001) e HPB (P=0,005). GRIP1 foi mais expresso nos grupos CaP e ZPU em relação ao grupo HPB (P<0,001 e P=0.006, respectivamente) e a expressão de AIB1 foi maior nos grupos CaP e ZPU comparados ao grupo HPB (P=0,030 e P=0.001, respectivamente). A expressão protéica de FHL2 foi maior no grupo CaP comparado com o grupo HPB (P=0.023). As análises moleculares de AR, GRIP1 e AIB1, monstraram melhores parâmetros diagnósticos do que a análise dos níveis séricos de PSA. Conclusões. A presença de um número de repetições GGC>18 e GGC>19 do AR foi associada com o aumento da chance de desenvolver CaP. As repetições de GGC>18 também foram associadas com a chance de desenvolver HPB. Níveis baixos de testosterona sérica foram encontrados nos grupos CaP e HPB comparados com os controles. Baixos níveis de testosterona podem aumentar a chance de desenvolver CaP e HPB. Este estudo demonstra a participação dos genes AR, SHP, FHL2 e do complexo P160 no aumento de proliferação da glândula prostática. AR, FHL2, SRC1, GRIP1 e AIB1 poderão ser uma boa alternativa para acompanhar os pacientes que possuem níveis elevados de PSA, toque alterado e biópsia negativa.
id URGS_2b6508081e6f4a1e07ff899f6b4d3b7a
oai_identifier_str oai:www.lume.ufrgs.br:10183/26882
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Biolchi, VanderleiBrum, Ilma Simoni2010-12-08T04:22:37Z2010http://hdl.handle.net/10183/26882000762193Introdução. O câncer de próstata (CaP) é o mais comum em homens nos Estados Unidos. Em 2010, formam estimados 192.280 novos casos de CaP e 27.360 mortes nos Estados Unidos. A incidência estimada de CaP no Brasil é de 52.350 novos casos em 2010, principalmente na região sul. A hiperplasia prostática benigna (HPB) é uma anormalidade proliferativa associada à idade em homens. A prevalência de HPB é em torno de 14% entre 40 e 50 anos e 43% acima de 60 anos. A patogênese do desenvolvimento tumoral tem sido associada com a ação dos hormônios esteróides. Os efeitos dos androgênios são mediados pela testosterona e pela dihidrotestosterona (DHT) nas células alvo. Suas ações têm sido demonstradas na morfogênese, diferenciação, proliferação e secreção da glândula prostática. A ligação do androgênio promove a ativação do receptor de androgênio (AR), recrutamento de cofatores, promovendo a transcrição dos genes alvos hormônio-dependentes. Numerosos correguladores do AR têm sido descritos como sendo essenciais para a ativação do AR durante a progressão da doença. SHP, FHL2 e o complexo P160 (SRC1, GRIP1 e AIB1) parecem ser importantes correguladores do AR. O polimorfismo CAG e GGC do AR pode alterar a transcrição dos genes responsivos aos androgênios e, potencialmente, atuar no desenvolvimento da HPB e do CaP. Objetivo. 1. Investigar a associação entre o número de repetições CAG e GGC do AR, os níveis de testosterona e a chance de desenvolver CaP ou HPB em nossa população. 2. Investigar a expressão de SHP, FHL2, do complexo P160 e do AR em tecidos HPB, CaP e ZPU (zona periuretral proveniente das amostras CaP). Materiais e Métodos. Foram analisados 344 pacientes oriundos do Hospital de Clínicas de Porto Alegre, sendo 130 CaP, 126 HPB e 88 controles, para analisar o polimorfismo CAG e GGC. O DNA foi extraído a partir do sangue periférico e o gene do AR foi analisado através de análise de fragmento. Cento e dois pacientes submetidos à cirurgia foram utilizados para avaliar as expressões gênicas. Foram avaliados 36 HPB, 66 CaP e 33 ZPU. O RNA foi extraído e as expressões gênicas foram analisadas por PCR em tempo real. Os protocolos e os termos de consentimento foram aprovados pelo comitê de ética local e nacional. Resultados. As médias do número de repetições CAG e GGC foram semelhantes entre os grupos CaP, HPB e controles. A chance de desenvolver CaP nos indivíduos que possuem um longo alelo para o polimorfismo GGC (GGC > 18 e GGC >19) é de 1,96 e 3,30 vezes maior do que o alelo curto (GGC ≤ 18 e GGC ≤ 19) (p=0,035 e p=0,007), respectivamente. A chance de desenvolver HPB em indivíduos que possuem o alelo longo para o polimorfismo GGC (GGC > 18) é 2,33 vezes maior (p=0,008) do que o alelo curto (GGC ≤ 18). O risco de desenvolver CaP e HPB em pacientes com a testosterona total < 4ng/mL foram de 2,80 (P=0,005) e 2,78 vezes maior (P=0,002), respectivamente, comparado com os pacientes com testosterona total > 4ng/mL. Os níveis séricos de testosterona total em pacientes com GGC > 19 foram significativamente menor comparados com pacientes com GGC ≤ 19 (P=0,001). A expressão gênica de AR foi maior no grupo ZPU e CaP em relação ao grupo HPB (P=0,033 e P<0.001, respectivamente). A expressão de SHP foi maior no grupo CaP comparado com o HPB (P=0,039). A expressão de FHL2 foi maior no grupo ZPU comparado com o CaP e HPB (P<0.001 e P=0.007, respectivamente). Dos genes que formam o complexo P160, a expressão de SRC1 foi maior no grupo ZPU comparado com o CaP (P<0.001) e HPB (P=0,005). GRIP1 foi mais expresso nos grupos CaP e ZPU em relação ao grupo HPB (P<0,001 e P=0.006, respectivamente) e a expressão de AIB1 foi maior nos grupos CaP e ZPU comparados ao grupo HPB (P=0,030 e P=0.001, respectivamente). A expressão protéica de FHL2 foi maior no grupo CaP comparado com o grupo HPB (P=0.023). As análises moleculares de AR, GRIP1 e AIB1, monstraram melhores parâmetros diagnósticos do que a análise dos níveis séricos de PSA. Conclusões. A presença de um número de repetições GGC>18 e GGC>19 do AR foi associada com o aumento da chance de desenvolver CaP. As repetições de GGC>18 também foram associadas com a chance de desenvolver HPB. Níveis baixos de testosterona sérica foram encontrados nos grupos CaP e HPB comparados com os controles. Baixos níveis de testosterona podem aumentar a chance de desenvolver CaP e HPB. Este estudo demonstra a participação dos genes AR, SHP, FHL2 e do complexo P160 no aumento de proliferação da glândula prostática. AR, FHL2, SRC1, GRIP1 e AIB1 poderão ser uma boa alternativa para acompanhar os pacientes que possuem níveis elevados de PSA, toque alterado e biópsia negativa.Introduction. Prostate cancer (PCa) is the most common cancer in men within the U.S. In 2010, 192,280 new cases were estimated in the U.S., and 27,360 deaths were due to this disease. The estimated incidence of prostate cancer in Brazil is of 52,350 new cases in 2010, mainly in southern regions. Benign Prostatic Hyperplasia (BPH) is a very frequent age-related proliferative abnormality in men. The prevalence of BPH is around 14 % at the age of 40 to 50 years, and 43% among those 60+. The pathogenesis of tumor development has been closely associated to the action of steroid hormones. The androgenic effects are mediated by testosterone and dihydrotestosterone (DHT) in the target cells and their action have been demonstrated in morphogenesis, differentiation, cell proliferation and secretions of the prostate gland. The androgen binding promotes the activation of the androgen receptor, recruitment of co-factors, promoting the transcription of hormone-dependent target genes. Several AR-associated coregulators have been shown to be essential for AR activation during disease progression. SHP, FHL2 and P160 complex (SRC1, GRIP1 and AIB1) has been shown as important AR coregulators. Polymorphic CAG and GGC repeats in the androgen receptor (AR) can alter transactivation of androgen-responsive genes and, potentially, act over BPH and PCa risks. Purposes. 1. To investigate the association between CAG and GGC repeat length, testosterone levels and the risks of PCa and BPH in a case-control study from a Brazilian population. 2. To investigate the SHP, FHL2, P160 and AR expressions in BPH, PCa and PUZ (periurethral zone tissue from PCa sample) tissues. Material and Methods. At Hospital de Clínicas de Porto Alegre, 344 patients were evaluated; 130 PCa, 126 BPH and 88 healthy controls, to analyze CAG and GGC polymorphisms. DNA was extracted from peripheral leukocytes and the AR gene was analyzed by fragment analysis. Hazard Ratio (HR) and 95% confidence limits were estimated. 102 men undergoing surgical removal were evaluated to analyze gene expressions; 36 BPH, 66 PCa and 33 PUZ. RNA was extracted and gene expression was analyzed by real time RT-PCR. Protocols and informed consent were approved by the local and national ethics committee. Results. CAG and GGC mean lengths were not different between PCa, BPH and controls. The risk of developing PCa in individuals who have the long allele for GGC polymorphism (GGC > 18 and GGC >19) was 1.96 and 3.30 times higher compared to the short allele (GGC ≤ 18 and GGC ≤ 19) (P=0.035 and P=0.007), respectively. The risk of developing BPH in individuals who have the long allele for GGC polymorphism (GGC > 18) was 2.33 times higher compared to the short allele (GGC ≤ 18) (P=0.008). The risk of developing PCa and BPH in individuals who have the total testosterone < 4ng/mL were 2.80 (P=0.005) and 2.78 times higher (P=0.002), respectively, compared to individuals with testosterone levels > 4ng/mL. The total testosterone level in patients with GGC >19 was significantly lower in comparison to patients with GGC ≤ 19 (P=0.001). AR mRNA level was higher in PCa and PUZ group than BPH (P=0.033 and P<0.001, respectively). SHP level was higher in PCa group compared to BPH (P=0.039). FHL2 level was higher in PUZ group compared to PCa and HPB (P<0.001 and P=0.007, respectively). SRC1 showed no difference between PCa and BPH, but PUZ group SRC1 levels was higher compared to PCa (P<0.001) and BPH (P=0,005). GRIP1 levels were higher in PCa and PUZ group than BPH (P<0.001 and P=0.006, respectively). AIB1 level was higher in PCa and PUZ group compared to BPH (P=0.030 and P=0.001, respectively). FHL2 protein expression was higher in PCa group compared to HPB (P=0.023). Molecular analysis of AR, GRIP1 and AIB1 demonstrated better diagnosis parameters compared to serum PSA levels. Conclusions. Our data suggest that the presence of a long number of GGC polymorphic repeats in the androgen receptor gene is associated with the increased risk of developing PCa and BPH. Serum testosterone levels were lower in PCA and BPH groups when compared to control groups. Low levels of testosterone can increase the risk of PCa and BPH. This study indicates a larger participation of AR, SHP, FHL2 and P160 genes in the prostate proliferation. AR, FHL2, SRC1, GRIP1 and AIB1 might be analyzed on the future to accomplish some patients who have higher PSA levels, altered digital rectal examination, and negative biopsy.application/pdfporNeoplasias da próstataHiperplasia prostáticaPolimorfismoReceptores androgênicosExpressão gênicaPolimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benignainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de Ciências Básicas da SaúdePrograma de Pós-Graduação em Ciências Biológicas: FisiologiaPorto Alegre, BR-RS2010doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000762193.pdf000762193.pdfTexto completoapplication/pdf1118590http://www.lume.ufrgs.br/bitstream/10183/26882/1/000762193.pdfc1d25b9ce6cd4d046d6151129f05e41fMD51TEXT000762193.pdf.txt000762193.pdf.txtExtracted Texttext/plain245822http://www.lume.ufrgs.br/bitstream/10183/26882/2/000762193.pdf.txt125192a1503acc91d33beb0dd15515abMD52THUMBNAIL000762193.pdf.jpg000762193.pdf.jpgGenerated Thumbnailimage/jpeg1274http://www.lume.ufrgs.br/bitstream/10183/26882/3/000762193.pdf.jpgd4e0680f5144c2a77dc2d428ade17c30MD5310183/268822022-08-13 04:58:41.453782oai:www.lume.ufrgs.br:10183/26882Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-08-13T07:58:41Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna
title Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna
spellingShingle Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna
Biolchi, Vanderlei
Neoplasias da próstata
Hiperplasia prostática
Polimorfismo
Receptores androgênicos
Expressão gênica
title_short Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna
title_full Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna
title_fullStr Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna
title_full_unstemmed Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna
title_sort Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna
author Biolchi, Vanderlei
author_facet Biolchi, Vanderlei
author_role author
dc.contributor.author.fl_str_mv Biolchi, Vanderlei
dc.contributor.advisor1.fl_str_mv Brum, Ilma Simoni
contributor_str_mv Brum, Ilma Simoni
dc.subject.por.fl_str_mv Neoplasias da próstata
Hiperplasia prostática
Polimorfismo
Receptores androgênicos
Expressão gênica
topic Neoplasias da próstata
Hiperplasia prostática
Polimorfismo
Receptores androgênicos
Expressão gênica
description Introdução. O câncer de próstata (CaP) é o mais comum em homens nos Estados Unidos. Em 2010, formam estimados 192.280 novos casos de CaP e 27.360 mortes nos Estados Unidos. A incidência estimada de CaP no Brasil é de 52.350 novos casos em 2010, principalmente na região sul. A hiperplasia prostática benigna (HPB) é uma anormalidade proliferativa associada à idade em homens. A prevalência de HPB é em torno de 14% entre 40 e 50 anos e 43% acima de 60 anos. A patogênese do desenvolvimento tumoral tem sido associada com a ação dos hormônios esteróides. Os efeitos dos androgênios são mediados pela testosterona e pela dihidrotestosterona (DHT) nas células alvo. Suas ações têm sido demonstradas na morfogênese, diferenciação, proliferação e secreção da glândula prostática. A ligação do androgênio promove a ativação do receptor de androgênio (AR), recrutamento de cofatores, promovendo a transcrição dos genes alvos hormônio-dependentes. Numerosos correguladores do AR têm sido descritos como sendo essenciais para a ativação do AR durante a progressão da doença. SHP, FHL2 e o complexo P160 (SRC1, GRIP1 e AIB1) parecem ser importantes correguladores do AR. O polimorfismo CAG e GGC do AR pode alterar a transcrição dos genes responsivos aos androgênios e, potencialmente, atuar no desenvolvimento da HPB e do CaP. Objetivo. 1. Investigar a associação entre o número de repetições CAG e GGC do AR, os níveis de testosterona e a chance de desenvolver CaP ou HPB em nossa população. 2. Investigar a expressão de SHP, FHL2, do complexo P160 e do AR em tecidos HPB, CaP e ZPU (zona periuretral proveniente das amostras CaP). Materiais e Métodos. Foram analisados 344 pacientes oriundos do Hospital de Clínicas de Porto Alegre, sendo 130 CaP, 126 HPB e 88 controles, para analisar o polimorfismo CAG e GGC. O DNA foi extraído a partir do sangue periférico e o gene do AR foi analisado através de análise de fragmento. Cento e dois pacientes submetidos à cirurgia foram utilizados para avaliar as expressões gênicas. Foram avaliados 36 HPB, 66 CaP e 33 ZPU. O RNA foi extraído e as expressões gênicas foram analisadas por PCR em tempo real. Os protocolos e os termos de consentimento foram aprovados pelo comitê de ética local e nacional. Resultados. As médias do número de repetições CAG e GGC foram semelhantes entre os grupos CaP, HPB e controles. A chance de desenvolver CaP nos indivíduos que possuem um longo alelo para o polimorfismo GGC (GGC > 18 e GGC >19) é de 1,96 e 3,30 vezes maior do que o alelo curto (GGC ≤ 18 e GGC ≤ 19) (p=0,035 e p=0,007), respectivamente. A chance de desenvolver HPB em indivíduos que possuem o alelo longo para o polimorfismo GGC (GGC > 18) é 2,33 vezes maior (p=0,008) do que o alelo curto (GGC ≤ 18). O risco de desenvolver CaP e HPB em pacientes com a testosterona total < 4ng/mL foram de 2,80 (P=0,005) e 2,78 vezes maior (P=0,002), respectivamente, comparado com os pacientes com testosterona total > 4ng/mL. Os níveis séricos de testosterona total em pacientes com GGC > 19 foram significativamente menor comparados com pacientes com GGC ≤ 19 (P=0,001). A expressão gênica de AR foi maior no grupo ZPU e CaP em relação ao grupo HPB (P=0,033 e P<0.001, respectivamente). A expressão de SHP foi maior no grupo CaP comparado com o HPB (P=0,039). A expressão de FHL2 foi maior no grupo ZPU comparado com o CaP e HPB (P<0.001 e P=0.007, respectivamente). Dos genes que formam o complexo P160, a expressão de SRC1 foi maior no grupo ZPU comparado com o CaP (P<0.001) e HPB (P=0,005). GRIP1 foi mais expresso nos grupos CaP e ZPU em relação ao grupo HPB (P<0,001 e P=0.006, respectivamente) e a expressão de AIB1 foi maior nos grupos CaP e ZPU comparados ao grupo HPB (P=0,030 e P=0.001, respectivamente). A expressão protéica de FHL2 foi maior no grupo CaP comparado com o grupo HPB (P=0.023). As análises moleculares de AR, GRIP1 e AIB1, monstraram melhores parâmetros diagnósticos do que a análise dos níveis séricos de PSA. Conclusões. A presença de um número de repetições GGC>18 e GGC>19 do AR foi associada com o aumento da chance de desenvolver CaP. As repetições de GGC>18 também foram associadas com a chance de desenvolver HPB. Níveis baixos de testosterona sérica foram encontrados nos grupos CaP e HPB comparados com os controles. Baixos níveis de testosterona podem aumentar a chance de desenvolver CaP e HPB. Este estudo demonstra a participação dos genes AR, SHP, FHL2 e do complexo P160 no aumento de proliferação da glândula prostática. AR, FHL2, SRC1, GRIP1 e AIB1 poderão ser uma boa alternativa para acompanhar os pacientes que possuem níveis elevados de PSA, toque alterado e biópsia negativa.
publishDate 2010
dc.date.accessioned.fl_str_mv 2010-12-08T04:22:37Z
dc.date.issued.fl_str_mv 2010
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/26882
dc.identifier.nrb.pt_BR.fl_str_mv 000762193
url http://hdl.handle.net/10183/26882
identifier_str_mv 000762193
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/26882/1/000762193.pdf
http://www.lume.ufrgs.br/bitstream/10183/26882/2/000762193.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/26882/3/000762193.pdf.jpg
bitstream.checksum.fl_str_mv c1d25b9ce6cd4d046d6151129f05e41f
125192a1503acc91d33beb0dd15515ab
d4e0680f5144c2a77dc2d428ade17c30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085189131436032