Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal

Detalhes bibliográficos
Autor(a) principal: Santos, Mariana Lovato dos
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/258392
Resumo: Como o planejamento no transporte urbano desempenha um papel essencial para o desenvolvimento sustentável dos sistemas de transporte, torna-se evidente a necessidade de explorar novas técnicas de análise para aprimorar a eficiência e a eficácia. Em particular, o uso de técnicas de Machine Learning (Aprendizado de Máquina) tem se mostrado promissor para lidar com os desafios complexos relacionados ao planejamento do transporte urbano. A incorporação desses algoritmos pode melhorar a capacidade de análise de dados e fornecer diretrizes para a tomada de decisões. Dado esse contexto, a presente dissertação foi dividida em dois artigos que tem por objetivos: (i) desenvolvimento de uma revisão sistemática da literatura para analisar de forma quantitativa os estudos existentes sobre planejamento de transporte urbano com modelos de Machine Learning, identificar os principais temas abordados, quais são as aplicações e como podem auxiliar na otimização dos sistemas de transporte urbano (ii) comparar modelos tradicionais de escolha discreta com algoritmos de Aprendizado de Máquina, a fim de analisar a previsão da escolha modal, utilizando dados provenientes de uma pesquisa de Preferência Declarada (PD) realizada em Porto Alegre em 2019. Os resultados obtidos na revisão sistemática indicam que os métodos de Aprendizado de Máquina estão em crescente utilização no planejamento de transportes. Dentre os métodos analisados, os modelos de previsão de demanda de tráfego e de transporte público se destacaram como os mais empregados na literatura. Além desses, outros métodos, como reconhecimento de sinais de trânsito, detecção de semáforos, classificação de veículos, detecção de pedestres, planejamento de tempo de viagem e de itinerário e comparativos entre algoritmos diferentes também foram frequentemente utilizados. Os resultados do estudo comparativo indicam que o modelo de Logit Multinomial (MLM) apresentou uma acurácia preditiva significativamente maior em comparação com os outros modelos de Aprendizado de Máquina testados. A taxa de acerto do MLM foi de 52,03%, seguida pelo método de Floresta Aleatória (FA) com 41,79%, e as Redes Neurais Artificiais (RNAs) com 40,94%. Esses resultados podem ser explicados pelo fato de que a base de dados utilizada na análise continha poucas observações para os modos de transporte Lotação e Táxi.
id URGS_344fa837291ec1fea8a8612947a8a365
oai_identifier_str oai:www.lume.ufrgs.br:10183/258392
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Santos, Mariana Lovato dosLarrañaga Uriarte, Ana Margarita2023-05-23T03:27:24Z2023http://hdl.handle.net/10183/258392001169173Como o planejamento no transporte urbano desempenha um papel essencial para o desenvolvimento sustentável dos sistemas de transporte, torna-se evidente a necessidade de explorar novas técnicas de análise para aprimorar a eficiência e a eficácia. Em particular, o uso de técnicas de Machine Learning (Aprendizado de Máquina) tem se mostrado promissor para lidar com os desafios complexos relacionados ao planejamento do transporte urbano. A incorporação desses algoritmos pode melhorar a capacidade de análise de dados e fornecer diretrizes para a tomada de decisões. Dado esse contexto, a presente dissertação foi dividida em dois artigos que tem por objetivos: (i) desenvolvimento de uma revisão sistemática da literatura para analisar de forma quantitativa os estudos existentes sobre planejamento de transporte urbano com modelos de Machine Learning, identificar os principais temas abordados, quais são as aplicações e como podem auxiliar na otimização dos sistemas de transporte urbano (ii) comparar modelos tradicionais de escolha discreta com algoritmos de Aprendizado de Máquina, a fim de analisar a previsão da escolha modal, utilizando dados provenientes de uma pesquisa de Preferência Declarada (PD) realizada em Porto Alegre em 2019. Os resultados obtidos na revisão sistemática indicam que os métodos de Aprendizado de Máquina estão em crescente utilização no planejamento de transportes. Dentre os métodos analisados, os modelos de previsão de demanda de tráfego e de transporte público se destacaram como os mais empregados na literatura. Além desses, outros métodos, como reconhecimento de sinais de trânsito, detecção de semáforos, classificação de veículos, detecção de pedestres, planejamento de tempo de viagem e de itinerário e comparativos entre algoritmos diferentes também foram frequentemente utilizados. Os resultados do estudo comparativo indicam que o modelo de Logit Multinomial (MLM) apresentou uma acurácia preditiva significativamente maior em comparação com os outros modelos de Aprendizado de Máquina testados. A taxa de acerto do MLM foi de 52,03%, seguida pelo método de Floresta Aleatória (FA) com 41,79%, e as Redes Neurais Artificiais (RNAs) com 40,94%. Esses resultados podem ser explicados pelo fato de que a base de dados utilizada na análise continha poucas observações para os modos de transporte Lotação e Táxi.As urban transportation planning plays an essential role in the sustainable development of transportation systems, there is a clear need to explore new analysis techniques to improve the efficiency and effectiveness of planning. In particular, the use of Machine Learning (ML) techniques has shown promise in dealing with complex challenges related to urban transportation planning. The incorporation of these algorithms can significantly improve data analysis capabilities and provide guidelines for decision-making. Given this context, this dissertation is divided into two articles that aim to: (i) develop a systematic literature review to quantitatively analyze existing studies on urban transportation planning with Machine Learning models, identify the main themes addressed, what are the applications, and how they can assist in optimizing urban transportation systems, (ii) compare traditional discrete choice models with Machine Learning algorithms to analyze modal choice prediction using data from a Stated Preference (SP) survey conducted in Porto Alegre in 2019. The results of the systematic review indicate that Machine Learning methods are increasingly being used in transportation planning. Among the methods analyzed, traffic and public transport demand prediction models stood out as the most frequently used in the literature. Additionally, other methods such as traffic sign recognition, traffic signal detection, vehicle classification, pedestrian detection, travel time and itinerary planning, and comparative studies between different algorithms were also frequently used. The results of the comparative study indicate that the Multinomial Logit Model (MLM) presented significantly higher predictive accuracy compared to other Machine Learning models tested. The MLM accuracy rate was 52.03%, followed by the Random Forest (RF) method with 41.79%, and the Artificial Neural Networks (ANNs) with 40.94%. These results may be explained by the fact that the database used in the analysis contained few observations for the Lotação and Taxi transportation modes.application/pdfporTransporte urbano : PlanejamentoAprendizado de máquinaAlgoritmosTransporte urbano : DemandaModal choiceFlexible transportMultinomial Logit ModelDecision treeRandom ForestArtificial Neural NetworksAlgoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPrograma de Pós-Graduação em Engenharia de Produção e TransportesPorto Alegre, BR-RS2023mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001169173.pdf.txt001169173.pdf.txtExtracted Texttext/plain113921http://www.lume.ufrgs.br/bitstream/10183/258392/2/001169173.pdf.txt8adda7fbe058104eed8c659f82f3063aMD52ORIGINAL001169173.pdfTexto completoapplication/pdf1379135http://www.lume.ufrgs.br/bitstream/10183/258392/1/001169173.pdfaf710ba079064ea8672c3a866132032aMD5110183/2583922023-05-24 03:28:18.37084oai:www.lume.ufrgs.br:10183/258392Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532023-05-24T06:28:18Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal
title Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal
spellingShingle Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal
Santos, Mariana Lovato dos
Transporte urbano : Planejamento
Aprendizado de máquina
Algoritmos
Transporte urbano : Demanda
Modal choice
Flexible transport
Multinomial Logit Model
Decision tree
Random Forest
Artificial Neural Networks
title_short Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal
title_full Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal
title_fullStr Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal
title_full_unstemmed Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal
title_sort Algoritmos de aprendizado de máquina supervisionados aplicados em transportes : comparativo com Modelo Logit Multinomial para escolha modal
author Santos, Mariana Lovato dos
author_facet Santos, Mariana Lovato dos
author_role author
dc.contributor.author.fl_str_mv Santos, Mariana Lovato dos
dc.contributor.advisor1.fl_str_mv Larrañaga Uriarte, Ana Margarita
contributor_str_mv Larrañaga Uriarte, Ana Margarita
dc.subject.por.fl_str_mv Transporte urbano : Planejamento
Aprendizado de máquina
Algoritmos
Transporte urbano : Demanda
topic Transporte urbano : Planejamento
Aprendizado de máquina
Algoritmos
Transporte urbano : Demanda
Modal choice
Flexible transport
Multinomial Logit Model
Decision tree
Random Forest
Artificial Neural Networks
dc.subject.eng.fl_str_mv Modal choice
Flexible transport
Multinomial Logit Model
Decision tree
Random Forest
Artificial Neural Networks
description Como o planejamento no transporte urbano desempenha um papel essencial para o desenvolvimento sustentável dos sistemas de transporte, torna-se evidente a necessidade de explorar novas técnicas de análise para aprimorar a eficiência e a eficácia. Em particular, o uso de técnicas de Machine Learning (Aprendizado de Máquina) tem se mostrado promissor para lidar com os desafios complexos relacionados ao planejamento do transporte urbano. A incorporação desses algoritmos pode melhorar a capacidade de análise de dados e fornecer diretrizes para a tomada de decisões. Dado esse contexto, a presente dissertação foi dividida em dois artigos que tem por objetivos: (i) desenvolvimento de uma revisão sistemática da literatura para analisar de forma quantitativa os estudos existentes sobre planejamento de transporte urbano com modelos de Machine Learning, identificar os principais temas abordados, quais são as aplicações e como podem auxiliar na otimização dos sistemas de transporte urbano (ii) comparar modelos tradicionais de escolha discreta com algoritmos de Aprendizado de Máquina, a fim de analisar a previsão da escolha modal, utilizando dados provenientes de uma pesquisa de Preferência Declarada (PD) realizada em Porto Alegre em 2019. Os resultados obtidos na revisão sistemática indicam que os métodos de Aprendizado de Máquina estão em crescente utilização no planejamento de transportes. Dentre os métodos analisados, os modelos de previsão de demanda de tráfego e de transporte público se destacaram como os mais empregados na literatura. Além desses, outros métodos, como reconhecimento de sinais de trânsito, detecção de semáforos, classificação de veículos, detecção de pedestres, planejamento de tempo de viagem e de itinerário e comparativos entre algoritmos diferentes também foram frequentemente utilizados. Os resultados do estudo comparativo indicam que o modelo de Logit Multinomial (MLM) apresentou uma acurácia preditiva significativamente maior em comparação com os outros modelos de Aprendizado de Máquina testados. A taxa de acerto do MLM foi de 52,03%, seguida pelo método de Floresta Aleatória (FA) com 41,79%, e as Redes Neurais Artificiais (RNAs) com 40,94%. Esses resultados podem ser explicados pelo fato de que a base de dados utilizada na análise continha poucas observações para os modos de transporte Lotação e Táxi.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-05-23T03:27:24Z
dc.date.issued.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/258392
dc.identifier.nrb.pt_BR.fl_str_mv 001169173
url http://hdl.handle.net/10183/258392
identifier_str_mv 001169173
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/258392/2/001169173.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/258392/1/001169173.pdf
bitstream.checksum.fl_str_mv 8adda7fbe058104eed8c659f82f3063a
af710ba079064ea8672c3a866132032a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085617921425408