Integrating BDI model and Bayesian networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/10422 |
Resumo: | Individualmente, as linhas de pesquisa da Inteligência Artificial têm proposto abordagens para a resolução de inúmeros problemas complexos do mundo real. O paradigma orientado a agentes provê os agentes autônomos, capazes de perceber os seus ambientes, reagir de acordo com diferentes circunstâncias e estabelecer interações sociais com outros agentes de software ou humanos. As redes Bayesianas fornecem uma maneira de representar graficamente as distribuições de probabilidades condicionais e permitem a realização de raciocínios probabilísticos baseados em evidências. As ontologias são especificações explícitas e formais de conceituações, que são usadas em uma variedade de áreas de pesquisa, incluindo os Sistemas Multiagentes. Contudo, existem aplicações cujos requisitos não podem ser atendidos por uma única tecnologia. Circunstâncias como estas exigem a integração de tecnologias desenvolvidas por distintas áreas da Ciência da Computação. Esta dissertação trata a integração do modelo de agentes BDI (Belief-Desire-Intention) e das redes Bayesianas. Além disso, é adotada uma abordagem baseada em ontologias para representar o conhecimento incerto dos agentes. O primeiro passo em direção a integração foi o desenvolvimento de uma ontologia para representar a estrutura das redes Bayesinas. Esta ontologia tem como principal objetivo permitir a interoperabilidade agentes compatíveis com a arquitetura proposta. No entanto, a ontologia também facilita o entendimento necessário para abstrair os estados mentais e processos cognitivos dos agentes através de elementos das redes Bayesianas. Uma vez construída a ontologia, a mesma foi integrada com a arquitetura BDI. Através da integração do modelo BDI com as redes Bayesianas foi obtida uma arquitetura cognitiva de agentes capaz de deliberar sob incerteza. O processo de integração foi composto de duas etapas: abstração dos estados mentais através de elementos das redes Bayesianas e especificação do processo deliberativo. Finalmente, foi desenvolvido um estudo de caso, que consistiu na aplicação da arquitetura proposta no Agente Social, um componente de um portal educacional multiagente (PortEdu). |
id |
URGS_37e148af1ba20b8ede07be2379d72470 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/10422 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Fagundes, Moser SilvaVicari, Rosa Maria2007-08-17T05:11:27Z2007http://hdl.handle.net/10183/10422000597676Individualmente, as linhas de pesquisa da Inteligência Artificial têm proposto abordagens para a resolução de inúmeros problemas complexos do mundo real. O paradigma orientado a agentes provê os agentes autônomos, capazes de perceber os seus ambientes, reagir de acordo com diferentes circunstâncias e estabelecer interações sociais com outros agentes de software ou humanos. As redes Bayesianas fornecem uma maneira de representar graficamente as distribuições de probabilidades condicionais e permitem a realização de raciocínios probabilísticos baseados em evidências. As ontologias são especificações explícitas e formais de conceituações, que são usadas em uma variedade de áreas de pesquisa, incluindo os Sistemas Multiagentes. Contudo, existem aplicações cujos requisitos não podem ser atendidos por uma única tecnologia. Circunstâncias como estas exigem a integração de tecnologias desenvolvidas por distintas áreas da Ciência da Computação. Esta dissertação trata a integração do modelo de agentes BDI (Belief-Desire-Intention) e das redes Bayesianas. Além disso, é adotada uma abordagem baseada em ontologias para representar o conhecimento incerto dos agentes. O primeiro passo em direção a integração foi o desenvolvimento de uma ontologia para representar a estrutura das redes Bayesinas. Esta ontologia tem como principal objetivo permitir a interoperabilidade agentes compatíveis com a arquitetura proposta. No entanto, a ontologia também facilita o entendimento necessário para abstrair os estados mentais e processos cognitivos dos agentes através de elementos das redes Bayesianas. Uma vez construída a ontologia, a mesma foi integrada com a arquitetura BDI. Através da integração do modelo BDI com as redes Bayesianas foi obtida uma arquitetura cognitiva de agentes capaz de deliberar sob incerteza. O processo de integração foi composto de duas etapas: abstração dos estados mentais através de elementos das redes Bayesianas e especificação do processo deliberativo. Finalmente, foi desenvolvido um estudo de caso, que consistiu na aplicação da arquitetura proposta no Agente Social, um componente de um portal educacional multiagente (PortEdu).Individually, Artificial Intelligence research areas have proposed approaches to solve several complex real-world problems. The agent-based paradigm provided autonomous agents, capable of perceiving their environment, reacting in accordance with different situations, and establishing social interactions with other software agents and humans. Bayesian networks provided a way to represent graphically the conditional probability distributions and an evidence-based probabilistic reasoning. Ontologies are an effort to develop formal and explicit specifications of concepts, which have been used by a wide range of research areas, including Multiagent Systems. However, there are applications whose requirements can not be addressed by a single technology. Circumstances like these demand the integration of technologies developed by distinct areas of Computer Science. This work is particularly concerned with the integration of Belief-Desire-Intention (BDI) agent architecture and Bayesian networks. Moreover, it is adopted an ontology-based approach to represent the agent’s uncertain knowledge. To bring together those technologies, it was developed an ontology to represent the structure of Bayesian networks knowledge representation. This ontology supports the interoperability among agents that comply with the proposed architecture, and it also facilitates the understanding necessary to abstract the agents’ mental states and cognitive processes through elements of Bayesian networks. Once specified the ontology, it was integrated with the BDI agent architecture. By integrating BDI architecture and Bayesian networks, it was obtained a cognitive agent architecture capable of reasoning under uncertainty. It was performed in two stages: abstraction of mental states through Bayesian networks and specification of the deliberative process. Finally, it was developed a case study, which consists in applying the probabilistic BDI architecture in the Social Agent, a component of a multiagent educational portal (PortEdu).application/pdfengInteligência artificialOntologiasRedes bayesianasBDI modelBayesian networksOntologiesIntegrating BDI model and Bayesian networksIntegrando modelo BDI e redes Bayesianas info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2007mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000597676.pdf000597676.pdfTexto completo (inglês)application/pdf6618202http://www.lume.ufrgs.br/bitstream/10183/10422/1/000597676.pdfe503f5b46735ae00ac29e8b56b5b7dc8MD51TEXT000597676.pdf.txt000597676.pdf.txtExtracted Texttext/plain232316http://www.lume.ufrgs.br/bitstream/10183/10422/2/000597676.pdf.txt447af500f9680ee0dd6b982c1ac8f0d4MD52THUMBNAIL000597676.pdf.jpg000597676.pdf.jpgGenerated Thumbnailimage/jpeg1002http://www.lume.ufrgs.br/bitstream/10183/10422/3/000597676.pdf.jpg8821c4c9b9638c78abb644c8b5f98614MD5310183/104222021-05-26 04:35:07.776776oai:www.lume.ufrgs.br:10183/10422Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:35:07Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Integrating BDI model and Bayesian networks |
dc.title.alternative.pt.fl_str_mv |
Integrando modelo BDI e redes Bayesianas |
title |
Integrating BDI model and Bayesian networks |
spellingShingle |
Integrating BDI model and Bayesian networks Fagundes, Moser Silva Inteligência artificial Ontologias Redes bayesianas BDI model Bayesian networks Ontologies |
title_short |
Integrating BDI model and Bayesian networks |
title_full |
Integrating BDI model and Bayesian networks |
title_fullStr |
Integrating BDI model and Bayesian networks |
title_full_unstemmed |
Integrating BDI model and Bayesian networks |
title_sort |
Integrating BDI model and Bayesian networks |
author |
Fagundes, Moser Silva |
author_facet |
Fagundes, Moser Silva |
author_role |
author |
dc.contributor.author.fl_str_mv |
Fagundes, Moser Silva |
dc.contributor.advisor1.fl_str_mv |
Vicari, Rosa Maria |
contributor_str_mv |
Vicari, Rosa Maria |
dc.subject.por.fl_str_mv |
Inteligência artificial Ontologias Redes bayesianas |
topic |
Inteligência artificial Ontologias Redes bayesianas BDI model Bayesian networks Ontologies |
dc.subject.eng.fl_str_mv |
BDI model Bayesian networks Ontologies |
description |
Individualmente, as linhas de pesquisa da Inteligência Artificial têm proposto abordagens para a resolução de inúmeros problemas complexos do mundo real. O paradigma orientado a agentes provê os agentes autônomos, capazes de perceber os seus ambientes, reagir de acordo com diferentes circunstâncias e estabelecer interações sociais com outros agentes de software ou humanos. As redes Bayesianas fornecem uma maneira de representar graficamente as distribuições de probabilidades condicionais e permitem a realização de raciocínios probabilísticos baseados em evidências. As ontologias são especificações explícitas e formais de conceituações, que são usadas em uma variedade de áreas de pesquisa, incluindo os Sistemas Multiagentes. Contudo, existem aplicações cujos requisitos não podem ser atendidos por uma única tecnologia. Circunstâncias como estas exigem a integração de tecnologias desenvolvidas por distintas áreas da Ciência da Computação. Esta dissertação trata a integração do modelo de agentes BDI (Belief-Desire-Intention) e das redes Bayesianas. Além disso, é adotada uma abordagem baseada em ontologias para representar o conhecimento incerto dos agentes. O primeiro passo em direção a integração foi o desenvolvimento de uma ontologia para representar a estrutura das redes Bayesinas. Esta ontologia tem como principal objetivo permitir a interoperabilidade agentes compatíveis com a arquitetura proposta. No entanto, a ontologia também facilita o entendimento necessário para abstrair os estados mentais e processos cognitivos dos agentes através de elementos das redes Bayesianas. Uma vez construída a ontologia, a mesma foi integrada com a arquitetura BDI. Através da integração do modelo BDI com as redes Bayesianas foi obtida uma arquitetura cognitiva de agentes capaz de deliberar sob incerteza. O processo de integração foi composto de duas etapas: abstração dos estados mentais através de elementos das redes Bayesianas e especificação do processo deliberativo. Finalmente, foi desenvolvido um estudo de caso, que consistiu na aplicação da arquitetura proposta no Agente Social, um componente de um portal educacional multiagente (PortEdu). |
publishDate |
2007 |
dc.date.accessioned.fl_str_mv |
2007-08-17T05:11:27Z |
dc.date.issued.fl_str_mv |
2007 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/10422 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000597676 |
url |
http://hdl.handle.net/10183/10422 |
identifier_str_mv |
000597676 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/10422/1/000597676.pdf http://www.lume.ufrgs.br/bitstream/10183/10422/2/000597676.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/10422/3/000597676.pdf.jpg |
bitstream.checksum.fl_str_mv |
e503f5b46735ae00ac29e8b56b5b7dc8 447af500f9680ee0dd6b982c1ac8f0d4 8821c4c9b9638c78abb644c8b5f98614 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1816736791739236352 |