CVaR optimization of high dimensional portfolios using dynamic factor copulas

Detalhes bibliográficos
Autor(a) principal: Alovisi, Gustavo
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/253270
Resumo: Modelos de cópulas tornaram-se um método popular para a otimização de portfólios via Valor-em-Risco Condicional (CVaR). A abordagem de estimação normalmente é composta por dois passos: no primeiro, modelos ARMA-GARCH uni variados são utilizados para ajustar cada retorno dos ativos, enquanto que em um segundo passo, a estrutura de dependência do retorno dos ativos é modelada utilizando funções de cópulas. Com o aumento do número de ativos compondo um portfólio, a estimaçã de modelos tradicionais de cópulas dinâmicas torna-se computacionalmente onerosa. Neste trabalho, nossa contribuição principal é de utilizarmos modelos de cópulas fatoriais dinâmicas para encontrarmos um portfólio de alta dimensão ótimo no sentido de minimizar o seu CVaR. Cópulas fatoriais são capazes de lidar com a ”maldição da dimensionalidade” enquanto ainda oferecem um alto nível de complexidade e flexibilidade em seus modelos. Para introduzir variação temporal nos parâmetros de dependência das cópulas, utilizamos o modelo Generalizado de Scores Autoregressivos (GAS). Ainda, consideramos duas estruturas distintas de dependência: dependência homogênea e dependência em blocos. Utilizando dados de ações do Ibovespa de Janeiro de 2013 a Dezembro de 2020, aplicamos uma janela móvel de um dia para estimar ambos os modelos univariados e as funções de cópulas e também achar os pesos ótimos do portfólio para o dia seguinte. Os resultados empíricos sugerem que os modelos de cópulas fatoriais têm medidas de risco e retorno similares ou superiores em relação a um portfólio de uma cópula Gaussiana tradicional, sendo também consideravelmente superiores a dois portfólios de Markowitz de média-variância diferentes, um portfólio com pesos iguais para cada ativo e o índice IBRX50.
id URGS_72a259c77de1967ba669e07a331db8b2
oai_identifier_str oai:www.lume.ufrgs.br:10183/253270
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Alovisi, GustavoZiegelmann, Flavio Augusto2022-12-28T05:07:39Z2022http://hdl.handle.net/10183/253270001158576Modelos de cópulas tornaram-se um método popular para a otimização de portfólios via Valor-em-Risco Condicional (CVaR). A abordagem de estimação normalmente é composta por dois passos: no primeiro, modelos ARMA-GARCH uni variados são utilizados para ajustar cada retorno dos ativos, enquanto que em um segundo passo, a estrutura de dependência do retorno dos ativos é modelada utilizando funções de cópulas. Com o aumento do número de ativos compondo um portfólio, a estimaçã de modelos tradicionais de cópulas dinâmicas torna-se computacionalmente onerosa. Neste trabalho, nossa contribuição principal é de utilizarmos modelos de cópulas fatoriais dinâmicas para encontrarmos um portfólio de alta dimensão ótimo no sentido de minimizar o seu CVaR. Cópulas fatoriais são capazes de lidar com a ”maldição da dimensionalidade” enquanto ainda oferecem um alto nível de complexidade e flexibilidade em seus modelos. Para introduzir variação temporal nos parâmetros de dependência das cópulas, utilizamos o modelo Generalizado de Scores Autoregressivos (GAS). Ainda, consideramos duas estruturas distintas de dependência: dependência homogênea e dependência em blocos. Utilizando dados de ações do Ibovespa de Janeiro de 2013 a Dezembro de 2020, aplicamos uma janela móvel de um dia para estimar ambos os modelos univariados e as funções de cópulas e também achar os pesos ótimos do portfólio para o dia seguinte. Os resultados empíricos sugerem que os modelos de cópulas fatoriais têm medidas de risco e retorno similares ou superiores em relação a um portfólio de uma cópula Gaussiana tradicional, sendo também consideravelmente superiores a dois portfólios de Markowitz de média-variância diferentes, um portfólio com pesos iguais para cada ativo e o índice IBRX50.Copula models have become a popular Conditional Value-at-Risk (CVaR) portfolio optimization method. The estimation approach normally is composed by two steps: in the first, univariate ARMA-GARCH models are commonly fit to each asset return; whereas in a second step, the returns dependence structure is modeled using copula functions. As the number of assets in a portfolio increases, the estimation of traditional dynamic copulas becomes computationally burdensome. In this work, our novel contribution is to employ dynamic factor copula models to find an optimal high dimensional portfolio in the sense of minimizing its CVaR. Factor copulas are able to address the ”curse of dimensionality” while offering a high level of complexity and flexibility to the models. We introduce time variation into the copula dependence parameters using a Generalized Autoregressive Scores (GAS) model. Two distinct dependence structures are considered: homogeneous dependence and block dependence. Using data consisting of Ibovespa Brazilian stocks from January 2013 to December 2020, we apply a one-day rolling window to estimate both univariate models and copula functions and also to find optimal portfolio weights for the following day. Empirical results suggest that our min-CVaR-factor-copula proposed strategy has superior or similar risk and return measures with respect to a traditional Gaussian copula while being considerably superior to two different Markowitz mean-variance portfolios, an Equal Weights portfolio and the IBRX50 index.application/pdfporRisco financeiroCópulas : EstatísticaDependências (Estatística)Copula modelsConditional Value-at-Risk (CVaR)CVaR optimization of high dimensional portfolios using dynamic factor copulasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de Matemática e EstatísticaPrograma de Pós-Graduação em EstatísticaPorto Alegre, BR-RS2022mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001158576.pdf.txt001158576.pdf.txtExtracted Texttext/plain84513http://www.lume.ufrgs.br/bitstream/10183/253270/2/001158576.pdf.txtbd64a227fc40c7b9aea9d6805d33484eMD52ORIGINAL001158576.pdfTexto completo (inglês)application/pdf978244http://www.lume.ufrgs.br/bitstream/10183/253270/1/001158576.pdfe187f0193d96692d6f6830af7c70f022MD5110183/2532702023-01-20 06:01:30.969748oai:www.lume.ufrgs.br:10183/253270Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532023-01-20T08:01:30Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv CVaR optimization of high dimensional portfolios using dynamic factor copulas
title CVaR optimization of high dimensional portfolios using dynamic factor copulas
spellingShingle CVaR optimization of high dimensional portfolios using dynamic factor copulas
Alovisi, Gustavo
Risco financeiro
Cópulas : Estatística
Dependências (Estatística)
Copula models
Conditional Value-at-Risk (CVaR)
title_short CVaR optimization of high dimensional portfolios using dynamic factor copulas
title_full CVaR optimization of high dimensional portfolios using dynamic factor copulas
title_fullStr CVaR optimization of high dimensional portfolios using dynamic factor copulas
title_full_unstemmed CVaR optimization of high dimensional portfolios using dynamic factor copulas
title_sort CVaR optimization of high dimensional portfolios using dynamic factor copulas
author Alovisi, Gustavo
author_facet Alovisi, Gustavo
author_role author
dc.contributor.author.fl_str_mv Alovisi, Gustavo
dc.contributor.advisor1.fl_str_mv Ziegelmann, Flavio Augusto
contributor_str_mv Ziegelmann, Flavio Augusto
dc.subject.por.fl_str_mv Risco financeiro
Cópulas : Estatística
Dependências (Estatística)
topic Risco financeiro
Cópulas : Estatística
Dependências (Estatística)
Copula models
Conditional Value-at-Risk (CVaR)
dc.subject.eng.fl_str_mv Copula models
Conditional Value-at-Risk (CVaR)
description Modelos de cópulas tornaram-se um método popular para a otimização de portfólios via Valor-em-Risco Condicional (CVaR). A abordagem de estimação normalmente é composta por dois passos: no primeiro, modelos ARMA-GARCH uni variados são utilizados para ajustar cada retorno dos ativos, enquanto que em um segundo passo, a estrutura de dependência do retorno dos ativos é modelada utilizando funções de cópulas. Com o aumento do número de ativos compondo um portfólio, a estimaçã de modelos tradicionais de cópulas dinâmicas torna-se computacionalmente onerosa. Neste trabalho, nossa contribuição principal é de utilizarmos modelos de cópulas fatoriais dinâmicas para encontrarmos um portfólio de alta dimensão ótimo no sentido de minimizar o seu CVaR. Cópulas fatoriais são capazes de lidar com a ”maldição da dimensionalidade” enquanto ainda oferecem um alto nível de complexidade e flexibilidade em seus modelos. Para introduzir variação temporal nos parâmetros de dependência das cópulas, utilizamos o modelo Generalizado de Scores Autoregressivos (GAS). Ainda, consideramos duas estruturas distintas de dependência: dependência homogênea e dependência em blocos. Utilizando dados de ações do Ibovespa de Janeiro de 2013 a Dezembro de 2020, aplicamos uma janela móvel de um dia para estimar ambos os modelos univariados e as funções de cópulas e também achar os pesos ótimos do portfólio para o dia seguinte. Os resultados empíricos sugerem que os modelos de cópulas fatoriais têm medidas de risco e retorno similares ou superiores em relação a um portfólio de uma cópula Gaussiana tradicional, sendo também consideravelmente superiores a dois portfólios de Markowitz de média-variância diferentes, um portfólio com pesos iguais para cada ativo e o índice IBRX50.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-12-28T05:07:39Z
dc.date.issued.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/253270
dc.identifier.nrb.pt_BR.fl_str_mv 001158576
url http://hdl.handle.net/10183/253270
identifier_str_mv 001158576
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/253270/2/001158576.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/253270/1/001158576.pdf
bitstream.checksum.fl_str_mv bd64a227fc40c7b9aea9d6805d33484e
e187f0193d96692d6f6830af7c70f022
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085605904744448