Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil

Detalhes bibliográficos
Autor(a) principal: Cusinato, Rafael Tiecher
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/22654
Resumo: Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra.
id URGS_824c3fd25eb4b9cb657d68f552afb24c
oai_identifier_str oai:www.lume.ufrgs.br:10183/22654
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Cusinato, Rafael TiecherPôrto Júnior, Sabino da Silva2010-05-20T04:16:32Z2009http://hdl.handle.net/10183/22654000714854Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra.This thesis presents three essays on inflation forecasting and real-time data analysis in Brazil. By using a Phillips curve, the first essay presents an “evolutionary model” to forecast Brazilian inflation. The evolutionary model consists in a combination of a non-linear model (that is formed by a combination of three artificial neural networks - ANNs) and a linear model (that is also a benchmark for comparison purposes). Some parameters of the evolutionary model, including the combination weight, evolve throughout time according to adjustments defined by three algorithms that evaluate the out-of-sample errors. The ANNs were estimated by using a hybrid approach based on a genetic algorithm (GA) and on a Nelder-Mead simplex algorithm. In a 3, 6, 9 and 12 steps ahead out-of-sample forecasting experiment, the performance of the evolutionary model was compared to the performance of the benchmark linear model, according to root mean squared errors (RMSE) and to mean absolute error (MAE) criteria. The evolutionary model performed better than the linear model for all forecasting steps that were analyzed, according to both criteria. The second essay is motivated by recent literature on real-time data analysis, which has shown that several measures of economic activities go through important data revisions throughout time, implying important limitations to the use of these measures. We developed a GDP real-time data set to Brazilian economy and we analyzed the extent to which GDP growth and output gap series are revised over time. We showed that revisions to GDP growth (quarter-onquarter) are economic relevant, although the GDP growth revisions lose part of their importance as aggregation period increases (for example, four-quarter growth). To analyze the output gap revisions, we applied four detrending methods: the Hodrick-Prescott filter, the linear trend, the quadratic trend, and the Harvey-Clark model of unobservable components. It was shown that all methods had economically relevant magnitude of revisions. In a general way, both GDP data revisions and the low accuracy of end-of-sample output trend estimates were relevant sources of output gap revisions. The third essay is also a study about real-time data, but focused on industrial production (IP) data and on industrial production gap estimates. We showed that revisions to IP growth (month-on-month) and to IP quarterly moving average growth are economic relevant, although the IP growth revisions become less important as aggregation period increases (for example, twelve-month growth). To analyze the output gap revisions, we applied three detrending methods: the Hodrick-Prescott filter, the linear trend, and the quadratic trend. It was shown that all methods had economically relevant magnitude of revisions. In general, both IP data revisions and low accuracy of end-of-sample IP trend estimates were relevant sources of IP gap revisions, although the results suggest some prevalence of revisions originated from low accuracy of end-of-sample estimates.application/pdfporInflaçãoModelo matemáticoProduto interno brutoProdução industrialModelo de previsãoCurva de PhillipsDesempregoRedes neurais artificiaisBrasilInflation forecastingArtificial neural networksGenetics algorithmsPhillips curveEvolutionary modelReal-time dataOutput gapGrenoss domestic productIdustrial productionBusiness cycleBrazilEnsaios sobre previsão de inflação e análise de dados em tempo real no Brasilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de Ciências EconômicasPrograma de Pós-Graduação em EconomiaPorto Alegre, BR-RS2009doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000714854.pdf000714854.pdfTexto completoapplication/pdf1505717http://www.lume.ufrgs.br/bitstream/10183/22654/1/000714854.pdfbf9ddb580ff656bd28cd7fec4f09111cMD51TEXT000714854.pdf.txt000714854.pdf.txtExtracted Texttext/plain271417http://www.lume.ufrgs.br/bitstream/10183/22654/2/000714854.pdf.txte9ab837b0364d4a6b702574dd14f5136MD52THUMBNAIL000714854.pdf.jpg000714854.pdf.jpgGenerated Thumbnailimage/jpeg936http://www.lume.ufrgs.br/bitstream/10183/22654/3/000714854.pdf.jpg720a01b9b12b3208b30804b595755abbMD5310183/226542018-10-09 08:14:19.719oai:www.lume.ufrgs.br:10183/22654Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-09T11:14:19Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
title Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
spellingShingle Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
Cusinato, Rafael Tiecher
Inflação
Modelo matemático
Produto interno bruto
Produção industrial
Modelo de previsão
Curva de Phillips
Desemprego
Redes neurais artificiais
Brasil
Inflation forecasting
Artificial neural networks
Genetics algorithms
Phillips curve
Evolutionary model
Real-time data
Output gap
Grenoss domestic product
Idustrial production
Business cycle
Brazil
title_short Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
title_full Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
title_fullStr Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
title_full_unstemmed Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
title_sort Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
author Cusinato, Rafael Tiecher
author_facet Cusinato, Rafael Tiecher
author_role author
dc.contributor.author.fl_str_mv Cusinato, Rafael Tiecher
dc.contributor.advisor1.fl_str_mv Pôrto Júnior, Sabino da Silva
contributor_str_mv Pôrto Júnior, Sabino da Silva
dc.subject.por.fl_str_mv Inflação
Modelo matemático
Produto interno bruto
Produção industrial
Modelo de previsão
Curva de Phillips
Desemprego
Redes neurais artificiais
Brasil
topic Inflação
Modelo matemático
Produto interno bruto
Produção industrial
Modelo de previsão
Curva de Phillips
Desemprego
Redes neurais artificiais
Brasil
Inflation forecasting
Artificial neural networks
Genetics algorithms
Phillips curve
Evolutionary model
Real-time data
Output gap
Grenoss domestic product
Idustrial production
Business cycle
Brazil
dc.subject.eng.fl_str_mv Inflation forecasting
Artificial neural networks
Genetics algorithms
Phillips curve
Evolutionary model
Real-time data
Output gap
Grenoss domestic product
Idustrial production
Business cycle
Brazil
description Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra.
publishDate 2009
dc.date.issued.fl_str_mv 2009
dc.date.accessioned.fl_str_mv 2010-05-20T04:16:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/22654
dc.identifier.nrb.pt_BR.fl_str_mv 000714854
url http://hdl.handle.net/10183/22654
identifier_str_mv 000714854
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/22654/1/000714854.pdf
http://www.lume.ufrgs.br/bitstream/10183/22654/2/000714854.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/22654/3/000714854.pdf.jpg
bitstream.checksum.fl_str_mv bf9ddb580ff656bd28cd7fec4f09111c
e9ab837b0364d4a6b702574dd14f5136
720a01b9b12b3208b30804b595755abb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085172814544896