Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/22654 |
Resumo: | Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra. |
id |
URGS_824c3fd25eb4b9cb657d68f552afb24c |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/22654 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Cusinato, Rafael TiecherPôrto Júnior, Sabino da Silva2010-05-20T04:16:32Z2009http://hdl.handle.net/10183/22654000714854Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra.This thesis presents three essays on inflation forecasting and real-time data analysis in Brazil. By using a Phillips curve, the first essay presents an “evolutionary model” to forecast Brazilian inflation. The evolutionary model consists in a combination of a non-linear model (that is formed by a combination of three artificial neural networks - ANNs) and a linear model (that is also a benchmark for comparison purposes). Some parameters of the evolutionary model, including the combination weight, evolve throughout time according to adjustments defined by three algorithms that evaluate the out-of-sample errors. The ANNs were estimated by using a hybrid approach based on a genetic algorithm (GA) and on a Nelder-Mead simplex algorithm. In a 3, 6, 9 and 12 steps ahead out-of-sample forecasting experiment, the performance of the evolutionary model was compared to the performance of the benchmark linear model, according to root mean squared errors (RMSE) and to mean absolute error (MAE) criteria. The evolutionary model performed better than the linear model for all forecasting steps that were analyzed, according to both criteria. The second essay is motivated by recent literature on real-time data analysis, which has shown that several measures of economic activities go through important data revisions throughout time, implying important limitations to the use of these measures. We developed a GDP real-time data set to Brazilian economy and we analyzed the extent to which GDP growth and output gap series are revised over time. We showed that revisions to GDP growth (quarter-onquarter) are economic relevant, although the GDP growth revisions lose part of their importance as aggregation period increases (for example, four-quarter growth). To analyze the output gap revisions, we applied four detrending methods: the Hodrick-Prescott filter, the linear trend, the quadratic trend, and the Harvey-Clark model of unobservable components. It was shown that all methods had economically relevant magnitude of revisions. In a general way, both GDP data revisions and the low accuracy of end-of-sample output trend estimates were relevant sources of output gap revisions. The third essay is also a study about real-time data, but focused on industrial production (IP) data and on industrial production gap estimates. We showed that revisions to IP growth (month-on-month) and to IP quarterly moving average growth are economic relevant, although the IP growth revisions become less important as aggregation period increases (for example, twelve-month growth). To analyze the output gap revisions, we applied three detrending methods: the Hodrick-Prescott filter, the linear trend, and the quadratic trend. It was shown that all methods had economically relevant magnitude of revisions. In general, both IP data revisions and low accuracy of end-of-sample IP trend estimates were relevant sources of IP gap revisions, although the results suggest some prevalence of revisions originated from low accuracy of end-of-sample estimates.application/pdfporInflaçãoModelo matemáticoProduto interno brutoProdução industrialModelo de previsãoCurva de PhillipsDesempregoRedes neurais artificiaisBrasilInflation forecastingArtificial neural networksGenetics algorithmsPhillips curveEvolutionary modelReal-time dataOutput gapGrenoss domestic productIdustrial productionBusiness cycleBrazilEnsaios sobre previsão de inflação e análise de dados em tempo real no Brasilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulFaculdade de Ciências EconômicasPrograma de Pós-Graduação em EconomiaPorto Alegre, BR-RS2009doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000714854.pdf000714854.pdfTexto completoapplication/pdf1505717http://www.lume.ufrgs.br/bitstream/10183/22654/1/000714854.pdfbf9ddb580ff656bd28cd7fec4f09111cMD51TEXT000714854.pdf.txt000714854.pdf.txtExtracted Texttext/plain271417http://www.lume.ufrgs.br/bitstream/10183/22654/2/000714854.pdf.txte9ab837b0364d4a6b702574dd14f5136MD52THUMBNAIL000714854.pdf.jpg000714854.pdf.jpgGenerated Thumbnailimage/jpeg936http://www.lume.ufrgs.br/bitstream/10183/22654/3/000714854.pdf.jpg720a01b9b12b3208b30804b595755abbMD5310183/226542018-10-09 08:14:19.719oai:www.lume.ufrgs.br:10183/22654Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-09T11:14:19Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil |
title |
Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil |
spellingShingle |
Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil Cusinato, Rafael Tiecher Inflação Modelo matemático Produto interno bruto Produção industrial Modelo de previsão Curva de Phillips Desemprego Redes neurais artificiais Brasil Inflation forecasting Artificial neural networks Genetics algorithms Phillips curve Evolutionary model Real-time data Output gap Grenoss domestic product Idustrial production Business cycle Brazil |
title_short |
Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil |
title_full |
Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil |
title_fullStr |
Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil |
title_full_unstemmed |
Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil |
title_sort |
Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil |
author |
Cusinato, Rafael Tiecher |
author_facet |
Cusinato, Rafael Tiecher |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cusinato, Rafael Tiecher |
dc.contributor.advisor1.fl_str_mv |
Pôrto Júnior, Sabino da Silva |
contributor_str_mv |
Pôrto Júnior, Sabino da Silva |
dc.subject.por.fl_str_mv |
Inflação Modelo matemático Produto interno bruto Produção industrial Modelo de previsão Curva de Phillips Desemprego Redes neurais artificiais Brasil |
topic |
Inflação Modelo matemático Produto interno bruto Produção industrial Modelo de previsão Curva de Phillips Desemprego Redes neurais artificiais Brasil Inflation forecasting Artificial neural networks Genetics algorithms Phillips curve Evolutionary model Real-time data Output gap Grenoss domestic product Idustrial production Business cycle Brazil |
dc.subject.eng.fl_str_mv |
Inflation forecasting Artificial neural networks Genetics algorithms Phillips curve Evolutionary model Real-time data Output gap Grenoss domestic product Idustrial production Business cycle Brazil |
description |
Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra. |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009 |
dc.date.accessioned.fl_str_mv |
2010-05-20T04:16:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/22654 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000714854 |
url |
http://hdl.handle.net/10183/22654 |
identifier_str_mv |
000714854 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/22654/1/000714854.pdf http://www.lume.ufrgs.br/bitstream/10183/22654/2/000714854.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/22654/3/000714854.pdf.jpg |
bitstream.checksum.fl_str_mv |
bf9ddb580ff656bd28cd7fec4f09111c e9ab837b0364d4a6b702574dd14f5136 720a01b9b12b3208b30804b595755abb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1816736832328564736 |