Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana

Detalhes bibliográficos
Autor(a) principal: Mertins, Omar
Data de Publicação: 2008
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/14354
Resumo: Les liposomes sont des objets du monde colloïdal, composés d’une membrane comportant une ou plusieurs bicouches de phospholipides qui encapsule un noyau aqueux. Grâce à la méthodologie de l’évaporation en phase inverse, des liposomes nanométriques modifiés par l’incorporation de chitosane ont été fabriqués. Ce polysaccharide confère des propriétés intéressantes au système composite résultant. Des liposomes composites micrométriques ont également été produits, par une modification de la méthodologie d’électroformation de vésicules géantes, à partir d’une émulsion inverse comme précurseur. Les études physico-chimiques et structurales que nous avons réalisées ont permis d’identifier de nombreuses altérations dans le système vésiculaire, comme conséquence de la présence du chitosane, mais aussi sur des différentes conditions de transfert d’énergie et d’homogénéisation structurale. Nous avons caractérisé la variation i) de la taille, ii) du nombre de bicouches, iii) de la distance moyenne entre bicouches, iv) du coefficient de diffusion en suspension, v) de l’interaction avec le milieu aqueux et vi) du volume aqueux encapsulé, des liposomes nanométriques composites en fonction des paramètres de préparation suivants : concentration en polymère, utilisation éventuelle de filtration et d’ultrasons. Les modifications observées ont été interprétées en considérant les caractéristiques d’énergie et d’organisation moléculaire. Nous avons démontré que lors d’une considérable augmentation de température, les importantes variations structurales observées pour les vésicules sans chitosane sont très atténuées dans le cas des vésicules composites. Ainsi, une plus grande stabilité physique a été attribuée aux vésicules composites, comme résultat de la dissipation d’énergie thermique par le polymère incorporé. Les études du potentiel de surface, et du coefficient de diffusion différencié en suspension aqueuse, montrent l’efficacité de l’incorporation du chitosane dans les liposomes. La mesure de l’altération de mobilité du groupe phosphate indique l’existence d’interactions électrostatiques entre le polymère et les phospholipides. Nous avons ainsi prouvé la viabilité de l’incorporation de chitosane dans des vésicules micrométriques au moyen d’une méthode d’électroformation modifiée. Nous avons pu localiser le polymère sur la membrane de ces structures, et nous avons montré leur grande stabilité temporelle. Nous avons enfin déterminé de façon quantitative la densité de surface de polymère sur les membranes de phospholipide dans ces vésicules composites.
id URGS_93a3b8f94c48cc7ff6c6e673c4b2bf3c
oai_identifier_str oai:www.lume.ufrgs.br:10183/14354
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Mertins, OmarSilveira, Nádya Pesce daPohlmann, Adriana RaffinMarques, Carlos M.2008-10-25T04:13:19Z2008http://hdl.handle.net/10183/14354000657747Les liposomes sont des objets du monde colloïdal, composés d’une membrane comportant une ou plusieurs bicouches de phospholipides qui encapsule un noyau aqueux. Grâce à la méthodologie de l’évaporation en phase inverse, des liposomes nanométriques modifiés par l’incorporation de chitosane ont été fabriqués. Ce polysaccharide confère des propriétés intéressantes au système composite résultant. Des liposomes composites micrométriques ont également été produits, par une modification de la méthodologie d’électroformation de vésicules géantes, à partir d’une émulsion inverse comme précurseur. Les études physico-chimiques et structurales que nous avons réalisées ont permis d’identifier de nombreuses altérations dans le système vésiculaire, comme conséquence de la présence du chitosane, mais aussi sur des différentes conditions de transfert d’énergie et d’homogénéisation structurale. Nous avons caractérisé la variation i) de la taille, ii) du nombre de bicouches, iii) de la distance moyenne entre bicouches, iv) du coefficient de diffusion en suspension, v) de l’interaction avec le milieu aqueux et vi) du volume aqueux encapsulé, des liposomes nanométriques composites en fonction des paramètres de préparation suivants : concentration en polymère, utilisation éventuelle de filtration et d’ultrasons. Les modifications observées ont été interprétées en considérant les caractéristiques d’énergie et d’organisation moléculaire. Nous avons démontré que lors d’une considérable augmentation de température, les importantes variations structurales observées pour les vésicules sans chitosane sont très atténuées dans le cas des vésicules composites. Ainsi, une plus grande stabilité physique a été attribuée aux vésicules composites, comme résultat de la dissipation d’énergie thermique par le polymère incorporé. Les études du potentiel de surface, et du coefficient de diffusion différencié en suspension aqueuse, montrent l’efficacité de l’incorporation du chitosane dans les liposomes. La mesure de l’altération de mobilité du groupe phosphate indique l’existence d’interactions électrostatiques entre le polymère et les phospholipides. Nous avons ainsi prouvé la viabilité de l’incorporation de chitosane dans des vésicules micrométriques au moyen d’une méthode d’électroformation modifiée. Nous avons pu localiser le polymère sur la membrane de ces structures, et nous avons montré leur grande stabilité temporelle. Nous avons enfin déterminé de façon quantitative la densité de surface de polymère sur les membranes de phospholipide dans ces vésicules composites.Lipossomas são vesículas coloidais onde uma membrana formada por uma ou mais bicamadas fosfolipídicas encapsula um núcleo aquoso. Através do método da evaporação em fase reversa foram produzidos lipossomas nanométricos modificados com a incorporação de quitosana, um polissacarídeo com características vantajosas para o sistema compósito resultante. Lipossomas micrométricos compósitos também foram produzidos através de uma modificação no método da eletroformação de vesículas gigantes a partir de uma emulsão precursora. Os estudos físico-químicos e estruturais desenvolvidos identificaram uma série de alterações no sistema vesicular geradas pela presença da quitosana sob diferentes condições energéticas e de métodos de padronização estrutural. Lipossomas nanométricos compósitos apresentaram tamanhos, número de bicamadas, distâncias de repetição de bicamadas, coeficiente de difusão em suspensão aquosa, interação com o meio aquoso e volume aquoso encapsulado que variaram com a presença e concentração do polímero e com a utilização ou não de filtração e ultrasonicação na sua preparação. As modificações foram avaliadas considerando aspectos energéticos e de organização molecular. Com um significativo aumento de temperatura foram obtidas variações estruturais atenuadas nas vesículas compósitas em comparação com vesículas isentas de quitosana. Desta forma foi idendificada uma estabilidade física maior como resultado da dissipação de energia térmica devido à presença do polímero. O potencial superficial e o diferenciado coeficiente de difusão em suspensão aquosa mostraram a incorporação efetiva da quitosana nas estruturas. As alterações de mobilidade do grupo fosfato indicaram interações eletrostáticas entre o polímero e os fosfolipídios. A modificação do método da eletroformação mostrou a viabilidade de incorporação da quitosana na produção de vesículas micrométricas. A localização do polímero nas vesículas resultantes foi identificada na membrana das estruturas e o mesmo mostrou estabilidade de incorporação. Assim, pôde ser procedida a determinação quantitativa de polímero por unidade de superfície da membrana fosfolipídica das vesículas compósitas que correspondeu a 0,2 mg de quitosana por metro quadrado de área de superfície, considerando os dois lados da membrana fosfolipídica.Liposomes are colloidal vesicles where a membrane formed by one or more phospholipid bilayers encapsulates an aqueous core. Using the reverse phase evaporation method, modified nanometric liposomes were produced with the incorporation of chitosan, a polysaccharide with profitable characteristics for the resulting composite system. Micrometric composite liposomes were also produced by a modification on the electroformation method used to prepare giant vesicles through the application of a precursor emulsion. Structural and physico-chemical studies identified a series of alterations in the vesicular system generated by the presence of chitosan under different energetic conditions and methods of structure standardization. Nanometric composite liposomes featured sizes, number of bilayers, repeat distances of bilayers, diffusion coefficient in aqueous suspension, interactions with the aqueous media and encapsulated aqueous volume which varied with the presence and concentration of the polymer and with the application or not of filtration and sonication on the preparation method. The modifications were evaluated considering properties of energy and organization at the molecular level. Under a considerable increase of temperature, attenuated structural variations were obtained in the composite vesicles in comparison with the vesicles free of chitosan. In this way, a higher physical stability was identified as a result of thermal energy dissipation due to the presence of the polymer. The superficial potential and the distinguished diffusion coefficient in aqueous suspension showed the effective incorporation of chitosan in the structures. The alteration of the mobility of the phosphate group indicated electrostatic interactions between the polymer and the phospholipids. The modification of the electroformation method showed the practicable of chitosan incorporation in the production of micrometric vesicles. The localization of the polymer in the resulting vesicles was identified on the membrane of the structures, which showed stability of incorporation. Besides, it was possible to determine the quantity of polymer per unit of phospholipidic membrane surface of the composite vesicles corresponding to 0.2 mg of chitosan per square meter of phospholipids, considering the two sides of the membrane.application/pdfporPolímeros : CaracterizaçãoVesículas lipossômicasNanocápsulas : Características físico-químicasQuitosanaQuitossomasEstudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosanainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de QuímicaPrograma de Pós-Graduação em QuímicaPorto Alegre, BR-RS2008doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000657747.pdf000657747.pdfTexto completoapplication/pdf3581162http://www.lume.ufrgs.br/bitstream/10183/14354/1/000657747.pdf347f2b11b86d5f0dccafdf67cb39fbb1MD51TEXT000657747.pdf.txt000657747.pdf.txtExtracted Texttext/plain425879http://www.lume.ufrgs.br/bitstream/10183/14354/2/000657747.pdf.txtc7fa0d5da0c93af619dbc54bf86ee8d1MD52THUMBNAIL000657747.pdf.jpg000657747.pdf.jpgGenerated Thumbnailimage/jpeg1219http://www.lume.ufrgs.br/bitstream/10183/14354/3/000657747.pdf.jpg79dc09e4086d521ed211790d83228e1dMD5310183/143542022-02-22 05:07:15.248802oai:www.lume.ufrgs.br:10183/14354Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-02-22T08:07:15Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana
title Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana
spellingShingle Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana
Mertins, Omar
Polímeros : Caracterização
Vesículas lipossômicas
Nanocápsulas : Características físico-químicas
Quitosana
Quitossomas
title_short Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana
title_full Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana
title_fullStr Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana
title_full_unstemmed Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana
title_sort Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana
author Mertins, Omar
author_facet Mertins, Omar
author_role author
dc.contributor.author.fl_str_mv Mertins, Omar
dc.contributor.advisor1.fl_str_mv Silveira, Nádya Pesce da
dc.contributor.advisor-co1.fl_str_mv Pohlmann, Adriana Raffin
Marques, Carlos M.
contributor_str_mv Silveira, Nádya Pesce da
Pohlmann, Adriana Raffin
Marques, Carlos M.
dc.subject.por.fl_str_mv Polímeros : Caracterização
Vesículas lipossômicas
Nanocápsulas : Características físico-químicas
Quitosana
Quitossomas
topic Polímeros : Caracterização
Vesículas lipossômicas
Nanocápsulas : Características físico-químicas
Quitosana
Quitossomas
description Les liposomes sont des objets du monde colloïdal, composés d’une membrane comportant une ou plusieurs bicouches de phospholipides qui encapsule un noyau aqueux. Grâce à la méthodologie de l’évaporation en phase inverse, des liposomes nanométriques modifiés par l’incorporation de chitosane ont été fabriqués. Ce polysaccharide confère des propriétés intéressantes au système composite résultant. Des liposomes composites micrométriques ont également été produits, par une modification de la méthodologie d’électroformation de vésicules géantes, à partir d’une émulsion inverse comme précurseur. Les études physico-chimiques et structurales que nous avons réalisées ont permis d’identifier de nombreuses altérations dans le système vésiculaire, comme conséquence de la présence du chitosane, mais aussi sur des différentes conditions de transfert d’énergie et d’homogénéisation structurale. Nous avons caractérisé la variation i) de la taille, ii) du nombre de bicouches, iii) de la distance moyenne entre bicouches, iv) du coefficient de diffusion en suspension, v) de l’interaction avec le milieu aqueux et vi) du volume aqueux encapsulé, des liposomes nanométriques composites en fonction des paramètres de préparation suivants : concentration en polymère, utilisation éventuelle de filtration et d’ultrasons. Les modifications observées ont été interprétées en considérant les caractéristiques d’énergie et d’organisation moléculaire. Nous avons démontré que lors d’une considérable augmentation de température, les importantes variations structurales observées pour les vésicules sans chitosane sont très atténuées dans le cas des vésicules composites. Ainsi, une plus grande stabilité physique a été attribuée aux vésicules composites, comme résultat de la dissipation d’énergie thermique par le polymère incorporé. Les études du potentiel de surface, et du coefficient de diffusion différencié en suspension aqueuse, montrent l’efficacité de l’incorporation du chitosane dans les liposomes. La mesure de l’altération de mobilité du groupe phosphate indique l’existence d’interactions électrostatiques entre le polymère et les phospholipides. Nous avons ainsi prouvé la viabilité de l’incorporation de chitosane dans des vésicules micrométriques au moyen d’une méthode d’électroformation modifiée. Nous avons pu localiser le polymère sur la membrane de ces structures, et nous avons montré leur grande stabilité temporelle. Nous avons enfin déterminé de façon quantitative la densité de surface de polymère sur les membranes de phospholipide dans ces vésicules composites.
publishDate 2008
dc.date.accessioned.fl_str_mv 2008-10-25T04:13:19Z
dc.date.issued.fl_str_mv 2008
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/14354
dc.identifier.nrb.pt_BR.fl_str_mv 000657747
url http://hdl.handle.net/10183/14354
identifier_str_mv 000657747
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/14354/1/000657747.pdf
http://www.lume.ufrgs.br/bitstream/10183/14354/2/000657747.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/14354/3/000657747.pdf.jpg
bitstream.checksum.fl_str_mv 347f2b11b86d5f0dccafdf67cb39fbb1
c7fa0d5da0c93af619dbc54bf86ee8d1
79dc09e4086d521ed211790d83228e1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1800308967569620992