Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format

Detalhes bibliográficos
Autor(a) principal: Bitencourt, Tulio Pereira
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/258723
Resumo: Para reduzir o impacto dos vídeos na capacidade global de Internet, as empresas contam com padrões e formatos de codificação de vídeo, também conhecidos como codecs, para reduzir os tamanhos dos vídeos antes de transmiti-los ou armazená-los. O AV1, que surge como um promissor formato de codificação de vídeo de última geração e livre de royal ties lançado pela primeira vez em 2018, visa reduzir os tamanhos dos vídeos aplicando técnicas inovadoras e aprimoradas para aumentar os resultados de compactação do AV1. Entre seus componentes principais, o AV1 compreende um bloco de codificação de en tropia, que é responsável pela codificação sem perdas de símbolos gerados por outros módulos (por exemplo, predição intra-quadro, compensação de movimento, etc.). O co dificador aritmético, que faz parte do codificador de entropia, é um gargalo devido à sua dificuldade em trabalhar com paralelizações e conta com duas operações principais: CDF Operation e Boolean Operation, onde CDF representa Cumulative Distribution Function. Esta dissertação propõe um projeto VLSI digital, nomeado AE-AV1, como o primeiro codificador aritmético AV1 encontrado na literatura e capaz de atingir desempenho ultra high (ou seja, processamento de vídeos 8K@120fps em tempo real). Além disso, ver sões adicionais desta arquitetura foram propostas como AE-AV1-LP e AE-AV1-MB, que são, respectivamente, uma versão de baixo consumo (low-power) e um design inovador aplicando uma técnica Multi-Boolean também introduzida nesta dissertação. Todos os projetos aqui propostos foram sintetizados usando a ferramenta Cadence™ RC e o PDK ST 65nm. Como o AV1 é conhecido por ser uma alternativa de código aberto na indús tria de codificação de vídeo, a arquitetura AE-AV1 também foi sintetizada de Verilog a layout GDSII usando um fluxo ASIC totalmente de código aberto (ou seja, ferramenta OpenROAD, fluxo OpenLane e PDKs ASAP7 e SkyWater 130nm). As arquiteturas foram capazes de atingir frequências de 581 MHz, 563 MHz e 590 MHz nas versões AE-AV1, AE-AV1-LP e AE-AV1-MB 2-bool, respectivamente. Com relação às vazões, todas as arquiteturas são capazes de processar vídeos 8K@120fps em tempo real com taxas de 1.032 Gbits/seg, 0.999 Gbits/seg e 1.117 Gbits/seg respectivamente.
id URGS_a1d5d5b05c803a79c6aa8a533dc2ecab
oai_identifier_str oai:www.lume.ufrgs.br:10183/258723
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Bitencourt, Tulio PereiraBampi, SergioRamos, Fabio Luis Livi2023-06-01T03:28:08Z2023http://hdl.handle.net/10183/258723001169987Para reduzir o impacto dos vídeos na capacidade global de Internet, as empresas contam com padrões e formatos de codificação de vídeo, também conhecidos como codecs, para reduzir os tamanhos dos vídeos antes de transmiti-los ou armazená-los. O AV1, que surge como um promissor formato de codificação de vídeo de última geração e livre de royal ties lançado pela primeira vez em 2018, visa reduzir os tamanhos dos vídeos aplicando técnicas inovadoras e aprimoradas para aumentar os resultados de compactação do AV1. Entre seus componentes principais, o AV1 compreende um bloco de codificação de en tropia, que é responsável pela codificação sem perdas de símbolos gerados por outros módulos (por exemplo, predição intra-quadro, compensação de movimento, etc.). O co dificador aritmético, que faz parte do codificador de entropia, é um gargalo devido à sua dificuldade em trabalhar com paralelizações e conta com duas operações principais: CDF Operation e Boolean Operation, onde CDF representa Cumulative Distribution Function. Esta dissertação propõe um projeto VLSI digital, nomeado AE-AV1, como o primeiro codificador aritmético AV1 encontrado na literatura e capaz de atingir desempenho ultra high (ou seja, processamento de vídeos 8K@120fps em tempo real). Além disso, ver sões adicionais desta arquitetura foram propostas como AE-AV1-LP e AE-AV1-MB, que são, respectivamente, uma versão de baixo consumo (low-power) e um design inovador aplicando uma técnica Multi-Boolean também introduzida nesta dissertação. Todos os projetos aqui propostos foram sintetizados usando a ferramenta Cadence™ RC e o PDK ST 65nm. Como o AV1 é conhecido por ser uma alternativa de código aberto na indús tria de codificação de vídeo, a arquitetura AE-AV1 também foi sintetizada de Verilog a layout GDSII usando um fluxo ASIC totalmente de código aberto (ou seja, ferramenta OpenROAD, fluxo OpenLane e PDKs ASAP7 e SkyWater 130nm). As arquiteturas foram capazes de atingir frequências de 581 MHz, 563 MHz e 590 MHz nas versões AE-AV1, AE-AV1-LP e AE-AV1-MB 2-bool, respectivamente. Com relação às vazões, todas as arquiteturas são capazes de processar vídeos 8K@120fps em tempo real com taxas de 1.032 Gbits/seg, 0.999 Gbits/seg e 1.117 Gbits/seg respectivamente.To reduce the impact of videos in the global Internet capacity, companies rely upon video coding standards and formats, also known as codecs, to reduce the overall sizes of videos before transmitting or storing them. AV1, which arises as a promising state-of-the-art and royalties-free video coding format first released in 2018, aims to reduce the sizes of videos by applying novel techniques to boost AV1’s compression results. Amongst its core components, AV1 comprises an entropy coding block, which is re sponsible for losslessly encoding symbols generated by other core modules (e.g., intra prediction, motion compensation, etc.). The arithmetic encoder, which is part of the en tropy encoder, is a bottleneck due to its difficulty to work with parallelizations, and relies upon two primary operations: CDF Operation and Boolean Operation, where CDF stands for Cumulative Distribution Function. This thesis proposes a baseline VLSI design, which was named AE-AV1, as the first ever AV1 arithmetic encoder found in the literature, and capable of reaching ultra-high performance (i.e., processing of 8K@120fps videos in real-time). Moreover, additional versions of this architecture were proposed as AE-AV1-LP and AE-AV1-MB, which are, respectively, a low-power version and a novel design applying a Multi-Boolean technique also introduced in this thesis. All the herein proposed designs were synthesized using the Cadence™ RC tool and the ST 65nm PDK. As the AV1 is well-known for being an open-source alternative in the video coding industry, the AE-AV1 architecture was also synthesized from Verilog to GDSII layout using a fully open-source ASIC flow (i.e., OpenROAD tool, OpenLane flow, and ASAP7 and SkyWater 130nm PDKs). The architectures were capable of reaching frequencies of 581 MHz, 563 MHz and 590 MHz for the versions AE-AV1, AE-AV1-LP and AE-AV1-MB 2-bool, respectively. With regard to throughput rates, all herein introduced architectures are capable of reaching 8K@120fps real-time video processing with rates of 1.032 Gbits/sec, 0.999 Gbits/sec and 1.117 Gbits/sec respectively.application/pdfporCodificacao : Video digitalHardwareVlsiAV1Arithmetic encoderHardware designVLSI architecturesArchitecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding formatinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em MicroeletrônicaPorto Alegre, BR-RS2023mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001169987.pdf.txt001169987.pdf.txtExtracted Texttext/plain200013http://www.lume.ufrgs.br/bitstream/10183/258723/2/001169987.pdf.txtee1e4beff1e6f31eefc5cf6dbe26cc10MD52ORIGINAL001169987.pdfTexto completo (inglês)application/pdf7201874http://www.lume.ufrgs.br/bitstream/10183/258723/1/001169987.pdf877cfde1229df3b2448cbe743a30e62dMD5110183/2587232023-06-02 03:29:00.752879oai:www.lume.ufrgs.br:10183/258723Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532023-06-02T06:29Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format
title Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format
spellingShingle Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format
Bitencourt, Tulio Pereira
Codificacao : Video digital
Hardware
Vlsi
AV1
Arithmetic encoder
Hardware design
VLSI architectures
title_short Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format
title_full Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format
title_fullStr Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format
title_full_unstemmed Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format
title_sort Architecture exploration and VLSI design of multi-symbol arithmetic encoders for the AV1 coding format
author Bitencourt, Tulio Pereira
author_facet Bitencourt, Tulio Pereira
author_role author
dc.contributor.author.fl_str_mv Bitencourt, Tulio Pereira
dc.contributor.advisor1.fl_str_mv Bampi, Sergio
dc.contributor.advisor-co1.fl_str_mv Ramos, Fabio Luis Livi
contributor_str_mv Bampi, Sergio
Ramos, Fabio Luis Livi
dc.subject.por.fl_str_mv Codificacao : Video digital
Hardware
Vlsi
topic Codificacao : Video digital
Hardware
Vlsi
AV1
Arithmetic encoder
Hardware design
VLSI architectures
dc.subject.eng.fl_str_mv AV1
Arithmetic encoder
Hardware design
VLSI architectures
description Para reduzir o impacto dos vídeos na capacidade global de Internet, as empresas contam com padrões e formatos de codificação de vídeo, também conhecidos como codecs, para reduzir os tamanhos dos vídeos antes de transmiti-los ou armazená-los. O AV1, que surge como um promissor formato de codificação de vídeo de última geração e livre de royal ties lançado pela primeira vez em 2018, visa reduzir os tamanhos dos vídeos aplicando técnicas inovadoras e aprimoradas para aumentar os resultados de compactação do AV1. Entre seus componentes principais, o AV1 compreende um bloco de codificação de en tropia, que é responsável pela codificação sem perdas de símbolos gerados por outros módulos (por exemplo, predição intra-quadro, compensação de movimento, etc.). O co dificador aritmético, que faz parte do codificador de entropia, é um gargalo devido à sua dificuldade em trabalhar com paralelizações e conta com duas operações principais: CDF Operation e Boolean Operation, onde CDF representa Cumulative Distribution Function. Esta dissertação propõe um projeto VLSI digital, nomeado AE-AV1, como o primeiro codificador aritmético AV1 encontrado na literatura e capaz de atingir desempenho ultra high (ou seja, processamento de vídeos 8K@120fps em tempo real). Além disso, ver sões adicionais desta arquitetura foram propostas como AE-AV1-LP e AE-AV1-MB, que são, respectivamente, uma versão de baixo consumo (low-power) e um design inovador aplicando uma técnica Multi-Boolean também introduzida nesta dissertação. Todos os projetos aqui propostos foram sintetizados usando a ferramenta Cadence™ RC e o PDK ST 65nm. Como o AV1 é conhecido por ser uma alternativa de código aberto na indús tria de codificação de vídeo, a arquitetura AE-AV1 também foi sintetizada de Verilog a layout GDSII usando um fluxo ASIC totalmente de código aberto (ou seja, ferramenta OpenROAD, fluxo OpenLane e PDKs ASAP7 e SkyWater 130nm). As arquiteturas foram capazes de atingir frequências de 581 MHz, 563 MHz e 590 MHz nas versões AE-AV1, AE-AV1-LP e AE-AV1-MB 2-bool, respectivamente. Com relação às vazões, todas as arquiteturas são capazes de processar vídeos 8K@120fps em tempo real com taxas de 1.032 Gbits/seg, 0.999 Gbits/seg e 1.117 Gbits/seg respectivamente.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-06-01T03:28:08Z
dc.date.issued.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/258723
dc.identifier.nrb.pt_BR.fl_str_mv 001169987
url http://hdl.handle.net/10183/258723
identifier_str_mv 001169987
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/258723/2/001169987.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/258723/1/001169987.pdf
bitstream.checksum.fl_str_mv ee1e4beff1e6f31eefc5cf6dbe26cc10
877cfde1229df3b2448cbe743a30e62d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1800309217145389056