Estimativa de biomassa acima do solo de caatinga através de imagens SAR

Detalhes bibliográficos
Autor(a) principal: Jesus, Janisson Batista de
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/237638
Resumo: A Caatinga é um bioma de ocorrência do semiárido do Brasil, tendo uma das maiores ocupações populacionais em terras secas no mundo. Porém, ainda há carência da aplicação de novas técnicas de estimativa de sua biomassa a partir de dados remotos. Sendo assim, o objetivo da tese foi avaliar a acurácia das imagens do Sentinel-1 na estimativa da biomassa acima do solo (BAS) da Caatinga no Alto Sertão do estado de Sergipe. A distribuição espacial e fenológica da Caatinga na região estudada foi analisada utilizando o Normalized Difference Vegetation Index (NDVI). A análise florística e fitossociológica foi realizada por meio do inventário florestal, utilizado também para calcular a BAS nos fragmentos de Caatinga. Foram testados diferentes métodos de filtragem para avaliar a eficácia na redução do speckle na imagem do Sentinel-1 analisando o número equivalente de looks (NEL). A estimativa da BAS utilizando imagens do Sentinel-1 utilizou dados do inventário em campo, comparando as acurácias das respostas de filtros a partir da decomposição polarimétrica e, posteriormente, testando os atributos: VV, VH, VH/VV, Radar Vegetation Index (RVI), Dual Polarization SAR Vegetation Index (DPSVI), Entropia (H), Ângulo Alpha (α), por meio de regressões lineares simples e múltiplas, na Caatinga Verde, Intermediária e Seca. A Caatinga estudada não é influenciada pelos fatores fisiográficos: declividade, altimetria, proximidade ao rio e tipo de solo. A Caatinga densa apresenta curvas fenológicas com maior condição de verdor que a aberta. A espécie Cenostigma pyramidale é a mais abundante entre as 25 identificadas. O filtro Gamma apresentou melhor desempenho na redução do speckle. A comparação da BAS estimada e observada indicou que a regressão múltipla fornece melhor acurácia nos períodos de Verdor (R2: 0,72) e Intermediário (R2: 0,73) da vegetação, com a contribuição de atributos coerentes e incoerentes. Portanto, o estudo permitiu analisar espacialmente a Caatinga estudada, caracterizando-a fenologicamente bem como sua composição e fitossociologia. Também foi possível verificar as diferentes atenuações do speckle no pré- processamento das imagens. Por fim, constatou-se que as imagens do Sentinel-1 podem ser utilizadas para a estimar a BAS.
id URGS_ae9235d9df3567ad1624c295f86df83f
oai_identifier_str oai:www.lume.ufrgs.br:10183/237638
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Jesus, Janisson Batista deKuplich, Tatiana Mora2022-04-21T04:40:03Z2022http://hdl.handle.net/10183/237638001140124A Caatinga é um bioma de ocorrência do semiárido do Brasil, tendo uma das maiores ocupações populacionais em terras secas no mundo. Porém, ainda há carência da aplicação de novas técnicas de estimativa de sua biomassa a partir de dados remotos. Sendo assim, o objetivo da tese foi avaliar a acurácia das imagens do Sentinel-1 na estimativa da biomassa acima do solo (BAS) da Caatinga no Alto Sertão do estado de Sergipe. A distribuição espacial e fenológica da Caatinga na região estudada foi analisada utilizando o Normalized Difference Vegetation Index (NDVI). A análise florística e fitossociológica foi realizada por meio do inventário florestal, utilizado também para calcular a BAS nos fragmentos de Caatinga. Foram testados diferentes métodos de filtragem para avaliar a eficácia na redução do speckle na imagem do Sentinel-1 analisando o número equivalente de looks (NEL). A estimativa da BAS utilizando imagens do Sentinel-1 utilizou dados do inventário em campo, comparando as acurácias das respostas de filtros a partir da decomposição polarimétrica e, posteriormente, testando os atributos: VV, VH, VH/VV, Radar Vegetation Index (RVI), Dual Polarization SAR Vegetation Index (DPSVI), Entropia (H), Ângulo Alpha (α), por meio de regressões lineares simples e múltiplas, na Caatinga Verde, Intermediária e Seca. A Caatinga estudada não é influenciada pelos fatores fisiográficos: declividade, altimetria, proximidade ao rio e tipo de solo. A Caatinga densa apresenta curvas fenológicas com maior condição de verdor que a aberta. A espécie Cenostigma pyramidale é a mais abundante entre as 25 identificadas. O filtro Gamma apresentou melhor desempenho na redução do speckle. A comparação da BAS estimada e observada indicou que a regressão múltipla fornece melhor acurácia nos períodos de Verdor (R2: 0,72) e Intermediário (R2: 0,73) da vegetação, com a contribuição de atributos coerentes e incoerentes. Portanto, o estudo permitiu analisar espacialmente a Caatinga estudada, caracterizando-a fenologicamente bem como sua composição e fitossociologia. Também foi possível verificar as diferentes atenuações do speckle no pré- processamento das imagens. Por fim, constatou-se que as imagens do Sentinel-1 podem ser utilizadas para a estimar a BAS.The Caatinga is a biome occurring in the semiarid region of Brazil, having one of the largest population occupations in dry lands in the world. However, there is still a lack of application of new techniques for estimating its biomass from remote data. Therefore, the objective of the thesis was to evaluate the accuracy of Sentinel-1 images in estimating the aboveground biomass (BAS) of the Caatinga in the Alto Sertão of the state of Sergipe. The spatial and phenological distribution of the Caatinga in the studied region was analyzed using the Normalized Difference Vegetation Index (NDVI). The floristic and phytosociological analysis was carried out through the forest inventory, also used to calculate the BAS in the Caatinga fragments. Different filtering methods were tested to evaluate the effectiveness of speckle reduction in the Sentinel-1 image by analyzing the equivalent number of looks (NEL). The BAS estimate using Sentinel-1 images used field inventory data comparing the accuracy of filter responses from the polarimetric decomposition and, later, testing the attributes: VV, VH, VH/VV, Radar Vegetation Index (RVI), Dual Polarization SAR Vegetation Index (DPSVI), Entropy (H), Alpha Angle (α), through simple and multiple linear regressions, in the Greenness, Intermediate and Dry Caatinga. The studied Caatinga is not influenced by physiographic factors: slope, altimetry, proximity to the river and type of soil. Dense Caatinga has phenological curves with greater greenness than open one. The Cenostigma pyramidale species is the most abundant among the 25 identified. The Gamma filter showed better performance in speckle reduction. The comparison of the estimated and observed BAS indicated that the multiple regression provides better accuracy in the Greenness (R2: 0.72) and Intermediate (R2: 0.73) periods of the vegetation, with the contribution of coherent and incoherent attributes. Therefore, the study allowed the spatial analysis of the studied Caatinga, characterizing it phenologically as well as its composition and phytosociology. It was also possible to verify the different attenuations of the speckle in the pre-processing of the images. Finally, it was found that Sentinel-1 images can be used to estimate BAS.application/pdfporFloresta tropicalSensoriamento remotoÍndice de vegetaçãoBiomassaRadarDry tropical forestVegetation indexRadarSentinel-1Forest biomassEstimativa de biomassa acima do solo de caatinga através de imagens SARinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulCentro Estadual de Pesquisas em Sensoriamento Remoto e MeteorologiaPrograma de Pós-Graduação em Sensoriamento RemotoPorto Alegre, BR-RS2022doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001140124.pdf.txt001140124.pdf.txtExtracted Texttext/plain318687http://www.lume.ufrgs.br/bitstream/10183/237638/2/001140124.pdf.txt706fec65b138dbdc1cf59db0a44b9f2aMD52ORIGINAL001140124.pdfTexto completoapplication/pdf7560047http://www.lume.ufrgs.br/bitstream/10183/237638/1/001140124.pdfef109447a5956946f736cd82b796831cMD5110183/2376382022-04-28 04:42:01.079882oai:www.lume.ufrgs.br:10183/237638Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-04-28T07:42:01Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Estimativa de biomassa acima do solo de caatinga através de imagens SAR
title Estimativa de biomassa acima do solo de caatinga através de imagens SAR
spellingShingle Estimativa de biomassa acima do solo de caatinga através de imagens SAR
Jesus, Janisson Batista de
Floresta tropical
Sensoriamento remoto
Índice de vegetação
Biomassa
Radar
Dry tropical forest
Vegetation index
Radar
Sentinel-1
Forest biomass
title_short Estimativa de biomassa acima do solo de caatinga através de imagens SAR
title_full Estimativa de biomassa acima do solo de caatinga através de imagens SAR
title_fullStr Estimativa de biomassa acima do solo de caatinga através de imagens SAR
title_full_unstemmed Estimativa de biomassa acima do solo de caatinga através de imagens SAR
title_sort Estimativa de biomassa acima do solo de caatinga através de imagens SAR
author Jesus, Janisson Batista de
author_facet Jesus, Janisson Batista de
author_role author
dc.contributor.author.fl_str_mv Jesus, Janisson Batista de
dc.contributor.advisor1.fl_str_mv Kuplich, Tatiana Mora
contributor_str_mv Kuplich, Tatiana Mora
dc.subject.por.fl_str_mv Floresta tropical
Sensoriamento remoto
Índice de vegetação
Biomassa
Radar
topic Floresta tropical
Sensoriamento remoto
Índice de vegetação
Biomassa
Radar
Dry tropical forest
Vegetation index
Radar
Sentinel-1
Forest biomass
dc.subject.eng.fl_str_mv Dry tropical forest
Vegetation index
Radar
Sentinel-1
Forest biomass
description A Caatinga é um bioma de ocorrência do semiárido do Brasil, tendo uma das maiores ocupações populacionais em terras secas no mundo. Porém, ainda há carência da aplicação de novas técnicas de estimativa de sua biomassa a partir de dados remotos. Sendo assim, o objetivo da tese foi avaliar a acurácia das imagens do Sentinel-1 na estimativa da biomassa acima do solo (BAS) da Caatinga no Alto Sertão do estado de Sergipe. A distribuição espacial e fenológica da Caatinga na região estudada foi analisada utilizando o Normalized Difference Vegetation Index (NDVI). A análise florística e fitossociológica foi realizada por meio do inventário florestal, utilizado também para calcular a BAS nos fragmentos de Caatinga. Foram testados diferentes métodos de filtragem para avaliar a eficácia na redução do speckle na imagem do Sentinel-1 analisando o número equivalente de looks (NEL). A estimativa da BAS utilizando imagens do Sentinel-1 utilizou dados do inventário em campo, comparando as acurácias das respostas de filtros a partir da decomposição polarimétrica e, posteriormente, testando os atributos: VV, VH, VH/VV, Radar Vegetation Index (RVI), Dual Polarization SAR Vegetation Index (DPSVI), Entropia (H), Ângulo Alpha (α), por meio de regressões lineares simples e múltiplas, na Caatinga Verde, Intermediária e Seca. A Caatinga estudada não é influenciada pelos fatores fisiográficos: declividade, altimetria, proximidade ao rio e tipo de solo. A Caatinga densa apresenta curvas fenológicas com maior condição de verdor que a aberta. A espécie Cenostigma pyramidale é a mais abundante entre as 25 identificadas. O filtro Gamma apresentou melhor desempenho na redução do speckle. A comparação da BAS estimada e observada indicou que a regressão múltipla fornece melhor acurácia nos períodos de Verdor (R2: 0,72) e Intermediário (R2: 0,73) da vegetação, com a contribuição de atributos coerentes e incoerentes. Portanto, o estudo permitiu analisar espacialmente a Caatinga estudada, caracterizando-a fenologicamente bem como sua composição e fitossociologia. Também foi possível verificar as diferentes atenuações do speckle no pré- processamento das imagens. Por fim, constatou-se que as imagens do Sentinel-1 podem ser utilizadas para a estimar a BAS.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-04-21T04:40:03Z
dc.date.issued.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/237638
dc.identifier.nrb.pt_BR.fl_str_mv 001140124
url http://hdl.handle.net/10183/237638
identifier_str_mv 001140124
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/237638/2/001140124.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/237638/1/001140124.pdf
bitstream.checksum.fl_str_mv 706fec65b138dbdc1cf59db0a44b9f2a
ef109447a5956946f736cd82b796831c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1816737050259357696