Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos

Detalhes bibliográficos
Autor(a) principal: Campos, Tatiane Jesus de
Data de Publicação: 2001
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/2329
Resumo: Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração de tráfego de automóveis. Uma das áreas de pesquisa que tem sido objeto de estudo por diferentes grupos é a leitura automática de placas de matrículas como forma de detectar transgressores, encontrar carros roubados ou efetuar estudos de origem/destino [BAR99]. Com o constante crescimento do volume de tráfego de automóvel e a limitada capacidade dos sensores convencionais, especialistas da área recorrem a técnicas de identificação automática de veículos para obter dados relativos ao escoamento de tráfego. A identificação automática de veículos tem tido essencialmente duas abordagens distintas: a utilização de transponders e a utilização de técnicas de visão computacional [INI85] . Estas são essencialmente úteis em casos em que não é viável obrigar os motoristas a instalar transponders em seus automóveis. No entanto, essas técnicas são mais sensíveis às condições atmosféricas e de iluminação tais como nevoeiros, chuva intensa, luz noturna, reflexos em superfícies, etc. Este trabalho apresenta um estudo de diversas técnicas de processamento de imagem objetivando o aperfeiçoamento de um sistema de identificação automática de placas de veículos. Este aperfeiçoamento está relacionado com a diminuição do tempo de execução necessário à localização e reconhecimento dos caracteres contidos nas placas dos veículos bem como a melhorar a taxa de sucesso no seu reconhecimento. A primeira versão do sistema de identificação da placas de veículos descrito em [SOU2000], desenvolvido no CPG-EE da UFRGS, denominado SIAV 1.0, localiza e extrai 91,3% das placas corretamente mas apresenta uma taxa de reconhecimento das placas de 37,3%, assim como um tempo de processamento não satisfatório. Neste trabalho, cujo sistema desenvolvido é denominado SIAV 2.0, a imagem é previamente processada através da aplicação de técnicas de realce da imagem. O principal objetivo das técnicas de realce é processar a imagem de modo que o resultado seja mais apropriado para uma aplicação específica do que a imagem original [GON93]. O sistema busca melhorar a qualidade da imagem eliminando ou suavizando sombras e reflexos presentes na cena em virtude da iluminação não controlada. Visando um menor tempo de execução durante o tratamento e análise da imagem um estudo estatístico baseado na distribuição gaussiana foi realizado de maneira a restringir a área de análise a ser processada. O SIAV possui duas redes neurais como ferramentas de reconhecimento de caracteres. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, foi desenvolvida uma nova arquitetura de rede a ser utilizada pelo SIAV 2.0 que oferece uma taxa de reconhecimento superior a rede neural usada no SIAV 1.0. Visando um melhor tempo de execução, a implementação em hardware dedicado para este modelo é abordado. Os testes foram realizados com três bancos de imagens obtidas por câmeras diferentes, inclusive por dispositivo "pardal" comercial. Estes testes foram realizados para verificar a efetividade dos algoritmos aperfeiçoados.
id URGS_cc2f48dcc210dcbe456d5cdac1b73ab1
oai_identifier_str oai:www.lume.ufrgs.br:10183/2329
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Campos, Tatiane Jesus deBampi, SergioSusin, Altamiro Amadeu2007-06-06T17:21:27Z2001http://hdl.handle.net/10183/2329000318050Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração de tráfego de automóveis. Uma das áreas de pesquisa que tem sido objeto de estudo por diferentes grupos é a leitura automática de placas de matrículas como forma de detectar transgressores, encontrar carros roubados ou efetuar estudos de origem/destino [BAR99]. Com o constante crescimento do volume de tráfego de automóvel e a limitada capacidade dos sensores convencionais, especialistas da área recorrem a técnicas de identificação automática de veículos para obter dados relativos ao escoamento de tráfego. A identificação automática de veículos tem tido essencialmente duas abordagens distintas: a utilização de transponders e a utilização de técnicas de visão computacional [INI85] . Estas são essencialmente úteis em casos em que não é viável obrigar os motoristas a instalar transponders em seus automóveis. No entanto, essas técnicas são mais sensíveis às condições atmosféricas e de iluminação tais como nevoeiros, chuva intensa, luz noturna, reflexos em superfícies, etc. Este trabalho apresenta um estudo de diversas técnicas de processamento de imagem objetivando o aperfeiçoamento de um sistema de identificação automática de placas de veículos. Este aperfeiçoamento está relacionado com a diminuição do tempo de execução necessário à localização e reconhecimento dos caracteres contidos nas placas dos veículos bem como a melhorar a taxa de sucesso no seu reconhecimento. A primeira versão do sistema de identificação da placas de veículos descrito em [SOU2000], desenvolvido no CPG-EE da UFRGS, denominado SIAV 1.0, localiza e extrai 91,3% das placas corretamente mas apresenta uma taxa de reconhecimento das placas de 37,3%, assim como um tempo de processamento não satisfatório. Neste trabalho, cujo sistema desenvolvido é denominado SIAV 2.0, a imagem é previamente processada através da aplicação de técnicas de realce da imagem. O principal objetivo das técnicas de realce é processar a imagem de modo que o resultado seja mais apropriado para uma aplicação específica do que a imagem original [GON93]. O sistema busca melhorar a qualidade da imagem eliminando ou suavizando sombras e reflexos presentes na cena em virtude da iluminação não controlada. Visando um menor tempo de execução durante o tratamento e análise da imagem um estudo estatístico baseado na distribuição gaussiana foi realizado de maneira a restringir a área de análise a ser processada. O SIAV possui duas redes neurais como ferramentas de reconhecimento de caracteres. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, foi desenvolvida uma nova arquitetura de rede a ser utilizada pelo SIAV 2.0 que oferece uma taxa de reconhecimento superior a rede neural usada no SIAV 1.0. Visando um melhor tempo de execução, a implementação em hardware dedicado para este modelo é abordado. Os testes foram realizados com três bancos de imagens obtidas por câmeras diferentes, inclusive por dispositivo "pardal" comercial. Estes testes foram realizados para verificar a efetividade dos algoritmos aperfeiçoados.application/pdfporComputação gráficaVisão computacionalProcessamento de imagensReconhecimento : CaracteresRedes neuraisReconhecimento de caracteres alfanuméricos de placas em imagens de veículosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2001mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000318050.pdf000318050.pdfTexto completoapplication/pdf4464312http://www.lume.ufrgs.br/bitstream/10183/2329/1/000318050.pdfd7ccf7a86c3d0c28349c4785d526ccc2MD51TEXT000318050.pdf.txt000318050.pdf.txtExtracted Texttext/plain199976http://www.lume.ufrgs.br/bitstream/10183/2329/2/000318050.pdf.txt95aa49b9ba44860c1a7c16b851d82699MD52THUMBNAIL000318050.pdf.jpg000318050.pdf.jpgGenerated Thumbnailimage/jpeg1221http://www.lume.ufrgs.br/bitstream/10183/2329/3/000318050.pdf.jpg112e2ef8014a57d2c6c6ad43df7828f0MD5310183/23292022-02-22 05:06:26.031451oai:www.lume.ufrgs.br:10183/2329Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-02-22T08:06:26Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
spellingShingle Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
Campos, Tatiane Jesus de
Computação gráfica
Visão computacional
Processamento de imagens
Reconhecimento : Caracteres
Redes neurais
title_short Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_full Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_fullStr Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_full_unstemmed Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_sort Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
author Campos, Tatiane Jesus de
author_facet Campos, Tatiane Jesus de
author_role author
dc.contributor.author.fl_str_mv Campos, Tatiane Jesus de
dc.contributor.advisor1.fl_str_mv Bampi, Sergio
dc.contributor.advisor-co1.fl_str_mv Susin, Altamiro Amadeu
contributor_str_mv Bampi, Sergio
Susin, Altamiro Amadeu
dc.subject.por.fl_str_mv Computação gráfica
Visão computacional
Processamento de imagens
Reconhecimento : Caracteres
Redes neurais
topic Computação gráfica
Visão computacional
Processamento de imagens
Reconhecimento : Caracteres
Redes neurais
description Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração de tráfego de automóveis. Uma das áreas de pesquisa que tem sido objeto de estudo por diferentes grupos é a leitura automática de placas de matrículas como forma de detectar transgressores, encontrar carros roubados ou efetuar estudos de origem/destino [BAR99]. Com o constante crescimento do volume de tráfego de automóvel e a limitada capacidade dos sensores convencionais, especialistas da área recorrem a técnicas de identificação automática de veículos para obter dados relativos ao escoamento de tráfego. A identificação automática de veículos tem tido essencialmente duas abordagens distintas: a utilização de transponders e a utilização de técnicas de visão computacional [INI85] . Estas são essencialmente úteis em casos em que não é viável obrigar os motoristas a instalar transponders em seus automóveis. No entanto, essas técnicas são mais sensíveis às condições atmosféricas e de iluminação tais como nevoeiros, chuva intensa, luz noturna, reflexos em superfícies, etc. Este trabalho apresenta um estudo de diversas técnicas de processamento de imagem objetivando o aperfeiçoamento de um sistema de identificação automática de placas de veículos. Este aperfeiçoamento está relacionado com a diminuição do tempo de execução necessário à localização e reconhecimento dos caracteres contidos nas placas dos veículos bem como a melhorar a taxa de sucesso no seu reconhecimento. A primeira versão do sistema de identificação da placas de veículos descrito em [SOU2000], desenvolvido no CPG-EE da UFRGS, denominado SIAV 1.0, localiza e extrai 91,3% das placas corretamente mas apresenta uma taxa de reconhecimento das placas de 37,3%, assim como um tempo de processamento não satisfatório. Neste trabalho, cujo sistema desenvolvido é denominado SIAV 2.0, a imagem é previamente processada através da aplicação de técnicas de realce da imagem. O principal objetivo das técnicas de realce é processar a imagem de modo que o resultado seja mais apropriado para uma aplicação específica do que a imagem original [GON93]. O sistema busca melhorar a qualidade da imagem eliminando ou suavizando sombras e reflexos presentes na cena em virtude da iluminação não controlada. Visando um menor tempo de execução durante o tratamento e análise da imagem um estudo estatístico baseado na distribuição gaussiana foi realizado de maneira a restringir a área de análise a ser processada. O SIAV possui duas redes neurais como ferramentas de reconhecimento de caracteres. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, foi desenvolvida uma nova arquitetura de rede a ser utilizada pelo SIAV 2.0 que oferece uma taxa de reconhecimento superior a rede neural usada no SIAV 1.0. Visando um melhor tempo de execução, a implementação em hardware dedicado para este modelo é abordado. Os testes foram realizados com três bancos de imagens obtidas por câmeras diferentes, inclusive por dispositivo "pardal" comercial. Estes testes foram realizados para verificar a efetividade dos algoritmos aperfeiçoados.
publishDate 2001
dc.date.issued.fl_str_mv 2001
dc.date.accessioned.fl_str_mv 2007-06-06T17:21:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/2329
dc.identifier.nrb.pt_BR.fl_str_mv 000318050
url http://hdl.handle.net/10183/2329
identifier_str_mv 000318050
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/2329/1/000318050.pdf
http://www.lume.ufrgs.br/bitstream/10183/2329/2/000318050.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/2329/3/000318050.pdf.jpg
bitstream.checksum.fl_str_mv d7ccf7a86c3d0c28349c4785d526ccc2
95aa49b9ba44860c1a7c16b851d82699
112e2ef8014a57d2c6c6ad43df7828f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085014231056384