Campos de Killing, curvatura média e translações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/6268 |
Resumo: | D. Hoffman, R. Osserman e R. Schoen mostraram que se a aplicação de Gauss de uma superfície orientada completa de curvatura média constante M imersa em R³ está contida em um hemisfério fechado de S² (equivalentemente, a função <n, V> não muda de sinal em M, onde n é um vetor unitário normal de M e v algum vetor não nulo de R³), então M é invariante por um subgrupo a um parâmetro de translações de R³ (aquele determinado por v). Neste trabalho obtemos uma extensão deste resultado para o caso em que o espaço ambiente é uma variedade riemanniana e M uma hipersuperfície em N requerendo que a função <n, V> não mude de sinal em M, onde V é um campo de Killing em N. Na parte final deste trabalho consideramos uma variedade riemanniana Killing paralelizável N para definir uma translação Y: M -> Rn de uma hipersuperfície M de N que é uma extensão natural da aplicação de Gauss de uma hipersuperfície de Rn. Considerando as mesmas hipóteses para a imagem de y obtemos uma extensão do resultado original de Hoffman-Osserman-Schoen. |
id |
URGS_cf03d2cf70e091b80262f4727ba0a76f |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/6268 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Peixoto, Cíntia Rodrigues de AraújoRipoll, Jaime Bruck2007-06-06T18:55:13Z2005http://hdl.handle.net/10183/6268000483409D. Hoffman, R. Osserman e R. Schoen mostraram que se a aplicação de Gauss de uma superfície orientada completa de curvatura média constante M imersa em R³ está contida em um hemisfério fechado de S² (equivalentemente, a função <n, V> não muda de sinal em M, onde n é um vetor unitário normal de M e v algum vetor não nulo de R³), então M é invariante por um subgrupo a um parâmetro de translações de R³ (aquele determinado por v). Neste trabalho obtemos uma extensão deste resultado para o caso em que o espaço ambiente é uma variedade riemanniana e M uma hipersuperfície em N requerendo que a função <n, V> não mude de sinal em M, onde V é um campo de Killing em N. Na parte final deste trabalho consideramos uma variedade riemanniana Killing paralelizável N para definir uma translação Y: M -> Rn de uma hipersuperfície M de N que é uma extensão natural da aplicação de Gauss de uma hipersuperfície de Rn. Considerando as mesmas hipóteses para a imagem de y obtemos uma extensão do resultado original de Hoffman-Osserman-Schoen.D. Hoffman, R. Osserman and R. Schoen proved that if the Gauss map of a complete constant mean curvature oriented surface M immersed in R³ is contained in a closed hemisphere of S² (equivalently, the function <n, V> does not change sign on M where n is a unit normal vector of M and v some non zero vector of R³), then M is invariant by a one parameter subgroup of translations of R³ (the one determined by v). In this work we obtain an extension of this result to the case that the ambient space is a Riemannian manifold and M a hypersurface on N by requiring that the function <n, V> does not change sign on M, where V is a Killing field on N. In the last part of this work we consider a Killing paralelizable Riemannian manifold N to define a translation map y : M -> Rn of a hypersurface M of N which is a natural extension of the Gauss map of a hypersurface in Rn. Considering the same hypothesis on the image of y we obtain, an extension to this setting, of the original Hoffman-Osserman-Schoen result.application/pdfporCampos de KillingSuperfícies de curvatura médiaCampos de Killing, curvatura média e translaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de MatemáticaPrograma de Pós-Graduação em MatemáticaPorto Alegre, BR-RS2005mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000483409.pdf.txt000483409.pdf.txtExtracted Texttext/plain43934http://www.lume.ufrgs.br/bitstream/10183/6268/2/000483409.pdf.txtba801367bebab5b19ef0889a545372ddMD52ORIGINAL000483409.pdf000483409.pdfTexto completoapplication/pdf548052http://www.lume.ufrgs.br/bitstream/10183/6268/1/000483409.pdfc224936a4822dc91eb8fce41a0125aa1MD51THUMBNAIL000483409.pdf.jpg000483409.pdf.jpgGenerated Thumbnailimage/jpeg1121http://www.lume.ufrgs.br/bitstream/10183/6268/3/000483409.pdf.jpg8594aebee8b11bbafd88ce77ee966c41MD5310183/62682021-05-26 04:35:14.757151oai:www.lume.ufrgs.br:10183/6268Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:35:14Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Campos de Killing, curvatura média e translações |
title |
Campos de Killing, curvatura média e translações |
spellingShingle |
Campos de Killing, curvatura média e translações Peixoto, Cíntia Rodrigues de Araújo Campos de Killing Superfícies de curvatura média |
title_short |
Campos de Killing, curvatura média e translações |
title_full |
Campos de Killing, curvatura média e translações |
title_fullStr |
Campos de Killing, curvatura média e translações |
title_full_unstemmed |
Campos de Killing, curvatura média e translações |
title_sort |
Campos de Killing, curvatura média e translações |
author |
Peixoto, Cíntia Rodrigues de Araújo |
author_facet |
Peixoto, Cíntia Rodrigues de Araújo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Peixoto, Cíntia Rodrigues de Araújo |
dc.contributor.advisor1.fl_str_mv |
Ripoll, Jaime Bruck |
contributor_str_mv |
Ripoll, Jaime Bruck |
dc.subject.por.fl_str_mv |
Campos de Killing Superfícies de curvatura média |
topic |
Campos de Killing Superfícies de curvatura média |
description |
D. Hoffman, R. Osserman e R. Schoen mostraram que se a aplicação de Gauss de uma superfície orientada completa de curvatura média constante M imersa em R³ está contida em um hemisfério fechado de S² (equivalentemente, a função <n, V> não muda de sinal em M, onde n é um vetor unitário normal de M e v algum vetor não nulo de R³), então M é invariante por um subgrupo a um parâmetro de translações de R³ (aquele determinado por v). Neste trabalho obtemos uma extensão deste resultado para o caso em que o espaço ambiente é uma variedade riemanniana e M uma hipersuperfície em N requerendo que a função <n, V> não mude de sinal em M, onde V é um campo de Killing em N. Na parte final deste trabalho consideramos uma variedade riemanniana Killing paralelizável N para definir uma translação Y: M -> Rn de uma hipersuperfície M de N que é uma extensão natural da aplicação de Gauss de uma hipersuperfície de Rn. Considerando as mesmas hipóteses para a imagem de y obtemos uma extensão do resultado original de Hoffman-Osserman-Schoen. |
publishDate |
2005 |
dc.date.issued.fl_str_mv |
2005 |
dc.date.accessioned.fl_str_mv |
2007-06-06T18:55:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/6268 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000483409 |
url |
http://hdl.handle.net/10183/6268 |
identifier_str_mv |
000483409 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/6268/2/000483409.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/6268/1/000483409.pdf http://www.lume.ufrgs.br/bitstream/10183/6268/3/000483409.pdf.jpg |
bitstream.checksum.fl_str_mv |
ba801367bebab5b19ef0889a545372dd c224936a4822dc91eb8fce41a0125aa1 8594aebee8b11bbafd88ce77ee966c41 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085064103428096 |