Learning centrality measures with graph neural networks

Detalhes bibliográficos
Autor(a) principal: Avelar, Pedro Henrique da Costa
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/204663
Resumo: Medidas de Centralidade são um tipo de métrica importante na Análise de Redes Sociais. Tais métricas permitem inferir qual entidade é mais central (ou informalmente, mais importante) que outra. Análises baseadas em medidas de centralidade podem ajudar a detectar influenciadores sociais, pontos fracos em sistemas de segurança, etc. Nesta dissertação se investiga métodos para aprender a predizer estas medidas de centralidade utilizando somente a estrutura do grafo de entrada. Mais especificamente, são demonstradas diferentes formas de se classificar os vértices de acordo com suas medidas de centralidade, assim como uma breve análise de como aproximar estas medidas de centralidade. Nesta dissertação utiliza-se o conceito de uma Rede Grafo-Neural – um model de Aprendizagem Profunda que constrói o grafo de computação de acordo com a topologia do grafo que recebe de entrada. Aqui as performances destes modelos são avaliadas com várias medidas de centralidade e são comparadas com outros modelos de aprendizado de máquina na literatura. As análises para tanto a aproximação quanto a classificação das medidas de centralidade são feitas e se mostra que a classificação é mais fácil de ser computada. A transferência entre as tarefas de predizer as diferentes centralidades é analizada e as vantagens de cada modelo são destacadas. Os modelos são testados em grafos de distribuições aleatórias diferentes das quais foram treinados, em grafos maiores daqueles vistos durante o treinamento assim como com instâncias reais que são muito maiores do que as maiores instâncias vistas durante o treinamento. As representações internas dos vértices aprendidas pelo modelo são analisadas através de projeções de menor dimensão e se conjectura sobre o comportamento visto nos experimentos. Por fim, se identifica possíveis futuros trabalhosm destacados pelos resultados experimentais apresentados aqui.
id URGS_d52311659d35a07dcf83382fdc24e5f4
oai_identifier_str oai:www.lume.ufrgs.br:10183/204663
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Avelar, Pedro Henrique da CostaLamb, Luis da Cunha2020-01-21T04:15:16Z2019http://hdl.handle.net/10183/204663001110504Medidas de Centralidade são um tipo de métrica importante na Análise de Redes Sociais. Tais métricas permitem inferir qual entidade é mais central (ou informalmente, mais importante) que outra. Análises baseadas em medidas de centralidade podem ajudar a detectar influenciadores sociais, pontos fracos em sistemas de segurança, etc. Nesta dissertação se investiga métodos para aprender a predizer estas medidas de centralidade utilizando somente a estrutura do grafo de entrada. Mais especificamente, são demonstradas diferentes formas de se classificar os vértices de acordo com suas medidas de centralidade, assim como uma breve análise de como aproximar estas medidas de centralidade. Nesta dissertação utiliza-se o conceito de uma Rede Grafo-Neural – um model de Aprendizagem Profunda que constrói o grafo de computação de acordo com a topologia do grafo que recebe de entrada. Aqui as performances destes modelos são avaliadas com várias medidas de centralidade e são comparadas com outros modelos de aprendizado de máquina na literatura. As análises para tanto a aproximação quanto a classificação das medidas de centralidade são feitas e se mostra que a classificação é mais fácil de ser computada. A transferência entre as tarefas de predizer as diferentes centralidades é analizada e as vantagens de cada modelo são destacadas. Os modelos são testados em grafos de distribuições aleatórias diferentes das quais foram treinados, em grafos maiores daqueles vistos durante o treinamento assim como com instâncias reais que são muito maiores do que as maiores instâncias vistas durante o treinamento. As representações internas dos vértices aprendidas pelo modelo são analisadas através de projeções de menor dimensão e se conjectura sobre o comportamento visto nos experimentos. Por fim, se identifica possíveis futuros trabalhosm destacados pelos resultados experimentais apresentados aqui.Centrality Measures are important metrics used in Social Network Analysis. Such measures allow one to infer which entity in a network is more central (informally, more important) than another. Analyses based on centrality measures may help detect possible social influencers, security weak spots, etc. This dissertation investigates methods for learning how to predict these centrality measures using only the graph’s structure. More specifically, different ways of ranking the vertices according to their centrality measures are shown, as well as a brief analysis on how to approximate the centrality measures themselves. This is achieved by building on previous work that used neural networks to estimate centrality measures given other centrality measures. In this dissertation, we use the concept of a Graph Neural Network – a Deep Learning model that builds the computation graph according to the topology of a desired input graph. Here these models’ performances are evaluated with different centrality measures, briefly comparing them with other machine learning models in the literature. The analyses for both the approximation and ranking of the centrality measures are evaluated and we show that the ranking of centrality measures is easier to compute. The transfer between the tasks of predicting these different centralities is analysed, and the advantages of each model is highlighted. The models are tested on graphs from different random distributions than the ones they were trained with, on graphs larger than the ones they saw during training as well as with real world instances that are much larger than the largest training graphs. The internal embeddings of the vertices produced by the model are analysed through lower-dimensional projections and conjectures are made on the behaviour seen in the experiments. Finally, we raise and identify possible future work highlighted by the experimental results presented here.application/pdfengRedes neuraisGrafosDeep neural networksrecurrent neural networksgraph neural networksgraphscentrality measuresLearning centrality measures with graph neural networksAprendendo medidas de centralidade com redes grafo-neurais info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2019mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001110504.pdf.txt001110504.pdf.txtExtracted Texttext/plain255541http://www.lume.ufrgs.br/bitstream/10183/204663/2/001110504.pdf.txt8a199330161d083a4cde7d64e72127bdMD52ORIGINAL001110504.pdfTexto completo (inglês)application/pdf5756385http://www.lume.ufrgs.br/bitstream/10183/204663/1/001110504.pdf8acdaf07fe29d8aa03390c0c057c0231MD5110183/2046632021-05-26 04:36:43.522651oai:www.lume.ufrgs.br:10183/204663Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:36:43Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Learning centrality measures with graph neural networks
dc.title.alternative.pt.fl_str_mv Aprendendo medidas de centralidade com redes grafo-neurais
title Learning centrality measures with graph neural networks
spellingShingle Learning centrality measures with graph neural networks
Avelar, Pedro Henrique da Costa
Redes neurais
Grafos
Deep neural networks
recurrent neural networks
graph neural networks
graphs
centrality measures
title_short Learning centrality measures with graph neural networks
title_full Learning centrality measures with graph neural networks
title_fullStr Learning centrality measures with graph neural networks
title_full_unstemmed Learning centrality measures with graph neural networks
title_sort Learning centrality measures with graph neural networks
author Avelar, Pedro Henrique da Costa
author_facet Avelar, Pedro Henrique da Costa
author_role author
dc.contributor.author.fl_str_mv Avelar, Pedro Henrique da Costa
dc.contributor.advisor1.fl_str_mv Lamb, Luis da Cunha
contributor_str_mv Lamb, Luis da Cunha
dc.subject.por.fl_str_mv Redes neurais
Grafos
topic Redes neurais
Grafos
Deep neural networks
recurrent neural networks
graph neural networks
graphs
centrality measures
dc.subject.eng.fl_str_mv Deep neural networks
recurrent neural networks
graph neural networks
graphs
centrality measures
description Medidas de Centralidade são um tipo de métrica importante na Análise de Redes Sociais. Tais métricas permitem inferir qual entidade é mais central (ou informalmente, mais importante) que outra. Análises baseadas em medidas de centralidade podem ajudar a detectar influenciadores sociais, pontos fracos em sistemas de segurança, etc. Nesta dissertação se investiga métodos para aprender a predizer estas medidas de centralidade utilizando somente a estrutura do grafo de entrada. Mais especificamente, são demonstradas diferentes formas de se classificar os vértices de acordo com suas medidas de centralidade, assim como uma breve análise de como aproximar estas medidas de centralidade. Nesta dissertação utiliza-se o conceito de uma Rede Grafo-Neural – um model de Aprendizagem Profunda que constrói o grafo de computação de acordo com a topologia do grafo que recebe de entrada. Aqui as performances destes modelos são avaliadas com várias medidas de centralidade e são comparadas com outros modelos de aprendizado de máquina na literatura. As análises para tanto a aproximação quanto a classificação das medidas de centralidade são feitas e se mostra que a classificação é mais fácil de ser computada. A transferência entre as tarefas de predizer as diferentes centralidades é analizada e as vantagens de cada modelo são destacadas. Os modelos são testados em grafos de distribuições aleatórias diferentes das quais foram treinados, em grafos maiores daqueles vistos durante o treinamento assim como com instâncias reais que são muito maiores do que as maiores instâncias vistas durante o treinamento. As representações internas dos vértices aprendidas pelo modelo são analisadas através de projeções de menor dimensão e se conjectura sobre o comportamento visto nos experimentos. Por fim, se identifica possíveis futuros trabalhosm destacados pelos resultados experimentais apresentados aqui.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2020-01-21T04:15:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/204663
dc.identifier.nrb.pt_BR.fl_str_mv 001110504
url http://hdl.handle.net/10183/204663
identifier_str_mv 001110504
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/204663/2/001110504.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/204663/1/001110504.pdf
bitstream.checksum.fl_str_mv 8a199330161d083a4cde7d64e72127bd
8acdaf07fe29d8aa03390c0c057c0231
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085514700652544