Pré-processamento no processo de descoberta de conhecimento em banco de dados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/2701 |
Resumo: | A Descoberta de Conhecimento em Banco de Dados (DCBD) é uma nova área de pesquisa que envolve o processo de extração de conhecimento útil implícito em grandes bases de dados. Existem várias metodologias para a realização de um processo de DCBD cuja essência consiste basicamente nas fases de entendimento do domínio do problema, pré-processamento, mineração de dados e pós-processamento. Na literatura sobre o assunto existem muitos trabalhos a respeito de mineração de dados, porém pouco se encontra sobre o processo de pré-processamento. Assim, o objetivo deste trabalho consiste no estudo do pré-processamento, já que é a fase que consome a maior parte do tempo e esforço de todo o processo de DCBD pois envolve operações de entendimento, seleção, limpeza e transformação de dados. Muitas vezes, essas operações precisam ser repetidas de modo a aprimorar a qualidade dos dados e, conseqüentemente, melhorar também a acurácia e eficiência do processo de mineração. A estrutura do trabalho abrange cinco capítulos. Inicialmente, apresenta-se a introdução e motivação para trabalho, juntamente com os objetivos e a metodologia utilizada. No segundo capítulo são abordadas metodologias para o processo de DCBD destacando-se CRISP-DM e a proposta por Fayyad, Piatetsky-Shapiro e Smyth. No terceiro capítulo são apresentadas as sub-fases da fase de pré-processamento contemplando-se entendimento, seleção, limpeza e transformação de dados, bem como os principais métodos e técnicas relacionados às mesmas. Já no quarto capítulo são descritos os experimentos realizados sobre uma base de dados real. Finalmente, no quinto capítulo são apresentadas as considerações finais sobre pré-processamento no processo de DCBD, apontando as dificuldades encontradas na prática, contribuições do presente trabalho e pretensões da continuidade do mesmo. Considera-se como principais contribuições deste trabalho a apresentação de métodos e técnicas de pré-processamento existentes, a comprovação da importância da interatividade com o especialista do domínio ao longo de todo o processo de DCBD, mas principalmente nas tomadas de decisões da fase de pré-processamento, bem como as sugestões de como realizar um pré-processamento sobre uma base de dados real. |
id |
URGS_e872f6412990a16967ada1a910418992 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/2701 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Neves, Rita de Cássia David dasAlvares, Luis Otavio Campos2007-06-06T17:23:31Z2003http://hdl.handle.net/10183/2701000375412A Descoberta de Conhecimento em Banco de Dados (DCBD) é uma nova área de pesquisa que envolve o processo de extração de conhecimento útil implícito em grandes bases de dados. Existem várias metodologias para a realização de um processo de DCBD cuja essência consiste basicamente nas fases de entendimento do domínio do problema, pré-processamento, mineração de dados e pós-processamento. Na literatura sobre o assunto existem muitos trabalhos a respeito de mineração de dados, porém pouco se encontra sobre o processo de pré-processamento. Assim, o objetivo deste trabalho consiste no estudo do pré-processamento, já que é a fase que consome a maior parte do tempo e esforço de todo o processo de DCBD pois envolve operações de entendimento, seleção, limpeza e transformação de dados. Muitas vezes, essas operações precisam ser repetidas de modo a aprimorar a qualidade dos dados e, conseqüentemente, melhorar também a acurácia e eficiência do processo de mineração. A estrutura do trabalho abrange cinco capítulos. Inicialmente, apresenta-se a introdução e motivação para trabalho, juntamente com os objetivos e a metodologia utilizada. No segundo capítulo são abordadas metodologias para o processo de DCBD destacando-se CRISP-DM e a proposta por Fayyad, Piatetsky-Shapiro e Smyth. No terceiro capítulo são apresentadas as sub-fases da fase de pré-processamento contemplando-se entendimento, seleção, limpeza e transformação de dados, bem como os principais métodos e técnicas relacionados às mesmas. Já no quarto capítulo são descritos os experimentos realizados sobre uma base de dados real. Finalmente, no quinto capítulo são apresentadas as considerações finais sobre pré-processamento no processo de DCBD, apontando as dificuldades encontradas na prática, contribuições do presente trabalho e pretensões da continuidade do mesmo. Considera-se como principais contribuições deste trabalho a apresentação de métodos e técnicas de pré-processamento existentes, a comprovação da importância da interatividade com o especialista do domínio ao longo de todo o processo de DCBD, mas principalmente nas tomadas de decisões da fase de pré-processamento, bem como as sugestões de como realizar um pré-processamento sobre uma base de dados real.application/pdfporBanco : DadosDescoberta : ConhecimentoMineracao : DadosInteligência artificialPré-processamento no processo de descoberta de conhecimento em banco de dadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2003mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000375412.pdf000375412.pdfTexto completoapplication/pdf965029http://www.lume.ufrgs.br/bitstream/10183/2701/1/000375412.pdf619e73e317412f0055f45c95ba1ab4fbMD51TEXT000375412.pdf.txt000375412.pdf.txtExtracted Texttext/plain304262http://www.lume.ufrgs.br/bitstream/10183/2701/2/000375412.pdf.txtab17679304f6cc7f694ae1383bf4e18aMD52THUMBNAIL000375412.pdf.jpg000375412.pdf.jpgGenerated Thumbnailimage/jpeg1144http://www.lume.ufrgs.br/bitstream/10183/2701/3/000375412.pdf.jpg858996acdb36a7259e6c4d0322096fa8MD5310183/27012018-10-15 09:07:31.688oai:www.lume.ufrgs.br:10183/2701Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-15T12:07:31Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Pré-processamento no processo de descoberta de conhecimento em banco de dados |
title |
Pré-processamento no processo de descoberta de conhecimento em banco de dados |
spellingShingle |
Pré-processamento no processo de descoberta de conhecimento em banco de dados Neves, Rita de Cássia David das Banco : Dados Descoberta : Conhecimento Mineracao : Dados Inteligência artificial |
title_short |
Pré-processamento no processo de descoberta de conhecimento em banco de dados |
title_full |
Pré-processamento no processo de descoberta de conhecimento em banco de dados |
title_fullStr |
Pré-processamento no processo de descoberta de conhecimento em banco de dados |
title_full_unstemmed |
Pré-processamento no processo de descoberta de conhecimento em banco de dados |
title_sort |
Pré-processamento no processo de descoberta de conhecimento em banco de dados |
author |
Neves, Rita de Cássia David das |
author_facet |
Neves, Rita de Cássia David das |
author_role |
author |
dc.contributor.author.fl_str_mv |
Neves, Rita de Cássia David das |
dc.contributor.advisor1.fl_str_mv |
Alvares, Luis Otavio Campos |
contributor_str_mv |
Alvares, Luis Otavio Campos |
dc.subject.por.fl_str_mv |
Banco : Dados Descoberta : Conhecimento Mineracao : Dados Inteligência artificial |
topic |
Banco : Dados Descoberta : Conhecimento Mineracao : Dados Inteligência artificial |
description |
A Descoberta de Conhecimento em Banco de Dados (DCBD) é uma nova área de pesquisa que envolve o processo de extração de conhecimento útil implícito em grandes bases de dados. Existem várias metodologias para a realização de um processo de DCBD cuja essência consiste basicamente nas fases de entendimento do domínio do problema, pré-processamento, mineração de dados e pós-processamento. Na literatura sobre o assunto existem muitos trabalhos a respeito de mineração de dados, porém pouco se encontra sobre o processo de pré-processamento. Assim, o objetivo deste trabalho consiste no estudo do pré-processamento, já que é a fase que consome a maior parte do tempo e esforço de todo o processo de DCBD pois envolve operações de entendimento, seleção, limpeza e transformação de dados. Muitas vezes, essas operações precisam ser repetidas de modo a aprimorar a qualidade dos dados e, conseqüentemente, melhorar também a acurácia e eficiência do processo de mineração. A estrutura do trabalho abrange cinco capítulos. Inicialmente, apresenta-se a introdução e motivação para trabalho, juntamente com os objetivos e a metodologia utilizada. No segundo capítulo são abordadas metodologias para o processo de DCBD destacando-se CRISP-DM e a proposta por Fayyad, Piatetsky-Shapiro e Smyth. No terceiro capítulo são apresentadas as sub-fases da fase de pré-processamento contemplando-se entendimento, seleção, limpeza e transformação de dados, bem como os principais métodos e técnicas relacionados às mesmas. Já no quarto capítulo são descritos os experimentos realizados sobre uma base de dados real. Finalmente, no quinto capítulo são apresentadas as considerações finais sobre pré-processamento no processo de DCBD, apontando as dificuldades encontradas na prática, contribuições do presente trabalho e pretensões da continuidade do mesmo. Considera-se como principais contribuições deste trabalho a apresentação de métodos e técnicas de pré-processamento existentes, a comprovação da importância da interatividade com o especialista do domínio ao longo de todo o processo de DCBD, mas principalmente nas tomadas de decisões da fase de pré-processamento, bem como as sugestões de como realizar um pré-processamento sobre uma base de dados real. |
publishDate |
2003 |
dc.date.issued.fl_str_mv |
2003 |
dc.date.accessioned.fl_str_mv |
2007-06-06T17:23:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/2701 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000375412 |
url |
http://hdl.handle.net/10183/2701 |
identifier_str_mv |
000375412 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/2701/1/000375412.pdf http://www.lume.ufrgs.br/bitstream/10183/2701/2/000375412.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/2701/3/000375412.pdf.jpg |
bitstream.checksum.fl_str_mv |
619e73e317412f0055f45c95ba1ab4fb ab17679304f6cc7f694ae1383bf4e18a 858996acdb36a7259e6c4d0322096fa8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1816736755322191872 |