Sincronização idêntica em redes de osciladores caóticos

Detalhes bibliográficos
Autor(a) principal: Oliveira, Emmanuel Gräve de
Data de Publicação: 2005
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/5986
Resumo: A presente dissertação versa sobre a sincronização idêntica em redes de osciladores caóticos. Uma perspectiva razoavelmente histórica sobre a literatura da área é apresentada . O conceito de caos é introduzido junto com outras idéias da dinâmica não-linear: sistemas dinâmicos, exemplos de sistemas, atratores, expoentes de Liapunov, etc. A integração numérica de equações diferenciais é largamente utilizada, principalmente, para o cálculo de expoentes e o desenho do diagrama de fases. A sincronização idêntica é definida, inicialmente, em redes que não passam de um par de osciladores. A variedade de sincronização (conjunto de pontos no espaço de fases no qual a solução do sistema é encontrada se há sincronização) é determinada. Diferentes variantes de acoplamentos lineares são enfocadas: acoplamento interno, externo, do tipo mestre-escravo e birecional, entre outras. Para detectar sincronização, usa-se o conceito de expoente de Liapunov transversal, uma extensão do conceito clássico de expoente de Liapunov que caracteriza a sincronização como a existência de um atrator na variedade de sincronização. A exposição é completada com exemplos e atinge relativo detalhe sobre o assunto, sem deixar de ser sintética com relação à ampla literatura existente. Um caso de sincronização em antifase que usa a mesma análise é incluído. A sincronização idêntica também é estudada em redes de osciladores idênticos com mais de dois osciladores. As possibilidades de sincronização completa e parcial são explanadas. As técnicas usadas para um par de osciladores são expandidas para cobrir este novo tipo de redes. A existência de variedades de sincronização invariantes é considerada como fator determinante para a sincronização. A sincronização parcial gera estruturas espaciais, analisadas sob a denominação de padrões. Algumas relações importantes entre as sincronizações são explicitadas, principalmente as degenerescências e a relação entre a sincronização parcial e a sincronização completa do respectivo estado sincronizado para alguns tipos de acoplamento. Ainda são objetos de interesse as redes formadas por grupos de osciladores idênticos que são diferentes dos osciladores dos outros grupos. A sincronização parcial na qual todos os grupos de osciladores têm seus elementos sincronizados é chamada de sincronização primária. A sincronização secundária é qualquer outro tipo de sincronização parcial. Ambas são exemplificadas e analisadas por meio dos expoentes transversais e novamente por meio da existência de invariantes de sincronização. Obtém-se, então, uma caracterização suficientemente ampla, completada por casos específicos.
id URGS_f2860464c73509fa58fce63e15facbc4
oai_identifier_str oai:www.lume.ufrgs.br:10183/5986
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Oliveira, Emmanuel Gräve deBraun, Thomas2007-06-06T18:51:37Z2005http://hdl.handle.net/10183/5986000478887A presente dissertação versa sobre a sincronização idêntica em redes de osciladores caóticos. Uma perspectiva razoavelmente histórica sobre a literatura da área é apresentada . O conceito de caos é introduzido junto com outras idéias da dinâmica não-linear: sistemas dinâmicos, exemplos de sistemas, atratores, expoentes de Liapunov, etc. A integração numérica de equações diferenciais é largamente utilizada, principalmente, para o cálculo de expoentes e o desenho do diagrama de fases. A sincronização idêntica é definida, inicialmente, em redes que não passam de um par de osciladores. A variedade de sincronização (conjunto de pontos no espaço de fases no qual a solução do sistema é encontrada se há sincronização) é determinada. Diferentes variantes de acoplamentos lineares são enfocadas: acoplamento interno, externo, do tipo mestre-escravo e birecional, entre outras. Para detectar sincronização, usa-se o conceito de expoente de Liapunov transversal, uma extensão do conceito clássico de expoente de Liapunov que caracteriza a sincronização como a existência de um atrator na variedade de sincronização. A exposição é completada com exemplos e atinge relativo detalhe sobre o assunto, sem deixar de ser sintética com relação à ampla literatura existente. Um caso de sincronização em antifase que usa a mesma análise é incluído. A sincronização idêntica também é estudada em redes de osciladores idênticos com mais de dois osciladores. As possibilidades de sincronização completa e parcial são explanadas. As técnicas usadas para um par de osciladores são expandidas para cobrir este novo tipo de redes. A existência de variedades de sincronização invariantes é considerada como fator determinante para a sincronização. A sincronização parcial gera estruturas espaciais, analisadas sob a denominação de padrões. Algumas relações importantes entre as sincronizações são explicitadas, principalmente as degenerescências e a relação entre a sincronização parcial e a sincronização completa do respectivo estado sincronizado para alguns tipos de acoplamento. Ainda são objetos de interesse as redes formadas por grupos de osciladores idênticos que são diferentes dos osciladores dos outros grupos. A sincronização parcial na qual todos os grupos de osciladores têm seus elementos sincronizados é chamada de sincronização primária. A sincronização secundária é qualquer outro tipo de sincronização parcial. Ambas são exemplificadas e analisadas por meio dos expoentes transversais e novamente por meio da existência de invariantes de sincronização. Obtém-se, então, uma caracterização suficientemente ampla, completada por casos específicos.application/pdfporFísica da matéria condensadaSistemas caóticosOsciladoresSincronização idêntica em redes de osciladores caóticosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de FísicaPrograma de Pós-Graduação em FísicaPorto Alegre, BR-RS2005mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000478887.pdf000478887.pdfTexto completoapplication/pdf1675419http://www.lume.ufrgs.br/bitstream/10183/5986/1/000478887.pdfb4cb18abf15760a5c01e4193257ba6fdMD51TEXT000478887.pdf.txt000478887.pdf.txtExtracted Texttext/plain168128http://www.lume.ufrgs.br/bitstream/10183/5986/2/000478887.pdf.txt60b551f09917361e461d74a912e69eaaMD5210183/59862018-06-07 02:31:54.898954oai:www.lume.ufrgs.br:10183/5986Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-06-07T05:31:54Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Sincronização idêntica em redes de osciladores caóticos
title Sincronização idêntica em redes de osciladores caóticos
spellingShingle Sincronização idêntica em redes de osciladores caóticos
Oliveira, Emmanuel Gräve de
Física da matéria condensada
Sistemas caóticos
Osciladores
title_short Sincronização idêntica em redes de osciladores caóticos
title_full Sincronização idêntica em redes de osciladores caóticos
title_fullStr Sincronização idêntica em redes de osciladores caóticos
title_full_unstemmed Sincronização idêntica em redes de osciladores caóticos
title_sort Sincronização idêntica em redes de osciladores caóticos
author Oliveira, Emmanuel Gräve de
author_facet Oliveira, Emmanuel Gräve de
author_role author
dc.contributor.author.fl_str_mv Oliveira, Emmanuel Gräve de
dc.contributor.advisor1.fl_str_mv Braun, Thomas
contributor_str_mv Braun, Thomas
dc.subject.por.fl_str_mv Física da matéria condensada
Sistemas caóticos
Osciladores
topic Física da matéria condensada
Sistemas caóticos
Osciladores
description A presente dissertação versa sobre a sincronização idêntica em redes de osciladores caóticos. Uma perspectiva razoavelmente histórica sobre a literatura da área é apresentada . O conceito de caos é introduzido junto com outras idéias da dinâmica não-linear: sistemas dinâmicos, exemplos de sistemas, atratores, expoentes de Liapunov, etc. A integração numérica de equações diferenciais é largamente utilizada, principalmente, para o cálculo de expoentes e o desenho do diagrama de fases. A sincronização idêntica é definida, inicialmente, em redes que não passam de um par de osciladores. A variedade de sincronização (conjunto de pontos no espaço de fases no qual a solução do sistema é encontrada se há sincronização) é determinada. Diferentes variantes de acoplamentos lineares são enfocadas: acoplamento interno, externo, do tipo mestre-escravo e birecional, entre outras. Para detectar sincronização, usa-se o conceito de expoente de Liapunov transversal, uma extensão do conceito clássico de expoente de Liapunov que caracteriza a sincronização como a existência de um atrator na variedade de sincronização. A exposição é completada com exemplos e atinge relativo detalhe sobre o assunto, sem deixar de ser sintética com relação à ampla literatura existente. Um caso de sincronização em antifase que usa a mesma análise é incluído. A sincronização idêntica também é estudada em redes de osciladores idênticos com mais de dois osciladores. As possibilidades de sincronização completa e parcial são explanadas. As técnicas usadas para um par de osciladores são expandidas para cobrir este novo tipo de redes. A existência de variedades de sincronização invariantes é considerada como fator determinante para a sincronização. A sincronização parcial gera estruturas espaciais, analisadas sob a denominação de padrões. Algumas relações importantes entre as sincronizações são explicitadas, principalmente as degenerescências e a relação entre a sincronização parcial e a sincronização completa do respectivo estado sincronizado para alguns tipos de acoplamento. Ainda são objetos de interesse as redes formadas por grupos de osciladores idênticos que são diferentes dos osciladores dos outros grupos. A sincronização parcial na qual todos os grupos de osciladores têm seus elementos sincronizados é chamada de sincronização primária. A sincronização secundária é qualquer outro tipo de sincronização parcial. Ambas são exemplificadas e analisadas por meio dos expoentes transversais e novamente por meio da existência de invariantes de sincronização. Obtém-se, então, uma caracterização suficientemente ampla, completada por casos específicos.
publishDate 2005
dc.date.issued.fl_str_mv 2005
dc.date.accessioned.fl_str_mv 2007-06-06T18:51:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/5986
dc.identifier.nrb.pt_BR.fl_str_mv 000478887
url http://hdl.handle.net/10183/5986
identifier_str_mv 000478887
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/5986/1/000478887.pdf
http://www.lume.ufrgs.br/bitstream/10183/5986/2/000478887.pdf.txt
bitstream.checksum.fl_str_mv b4cb18abf15760a5c01e4193257ba6fd
60b551f09917361e461d74a912e69eaa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085061320507392