Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes

Detalhes bibliográficos
Autor(a) principal: Pazinatto, Cássio Baissvenger
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/214679
Resumo: Neste trabalho, são derivadas soluções explícitas com respeito à variável espacial para o modelo de multigrupos de energia da adjunta da equação de transporte de partículas neutras, em geometria cartesiana unidimensional através de uma metodologia analítica de ordenadas discretas (método ADO). Em geometria cartesiana bidimensional, são fornecidas soluções explícitas com respeito às variáveis espaciais para os fluxos médios da adjunta da equação de transporte monoenergética, por meio do emprego de esquemas nodais junto da formulação ADO. Além disso, em ambas as geometrias, são derivadas expressões explícitas para as taxas de absorção de partículas em detectores internos ao domínio do problema. A avaliação das taxas de absorção permite testar as formulações obtidas através do conhecido problema fonte-detector, o qual possibilita uma análise comparativa entre os resultados obtidos por meio tanto da adjunta da equação de transporte, quanto pela equação de transporte. Nos testes numéricos, a configuração fonte-detector apresentou resultados com excelente concordância ao utilizar as expressões explícitas para as taxas de absorção. Ainda, a formulação é aplicada em um problema inverso de estimativa de fontes isotrópicas de partículas, em situações nas quais a geometria do meio, bem como as propriedades físicas dos materiais que o compõe são conhecidas, e uma série de leituras de detectores é disponível. Para a resolução do problema inverso, são consideradas a regularização de Tikhonov, bem como a aplicação de técnicas Bayesianas. São estimadas fontes polinomiais e degraus a partir de medições de detectores internos ao domínio do problema. De maneira geral, as estimativas das fontes foram capazes de indicar a localização das fontes internas e, dependendo do nível de ruídos considerado nas medições, estimar a magnitude das fontes. Além disso, nos problemas unidimensionais com fontes polinomiais e bidimensionais, os resultados obtidos via método de Tikhonov iterado foram considerados mais satisfatórios, enquanto nos problemas unidimensionais com fontes degraus o uso de técnicas Bayesianas tenham se mostrado superiores.
id URGS_f2f66f48389b594a427e0926fadd9d3a
oai_identifier_str oai:www.lume.ufrgs.br:10183/214679
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Pazinatto, Cássio BaissvengerBarichello, Liliane Basso2020-11-05T04:09:17Z2019http://hdl.handle.net/10183/214679001118909Neste trabalho, são derivadas soluções explícitas com respeito à variável espacial para o modelo de multigrupos de energia da adjunta da equação de transporte de partículas neutras, em geometria cartesiana unidimensional através de uma metodologia analítica de ordenadas discretas (método ADO). Em geometria cartesiana bidimensional, são fornecidas soluções explícitas com respeito às variáveis espaciais para os fluxos médios da adjunta da equação de transporte monoenergética, por meio do emprego de esquemas nodais junto da formulação ADO. Além disso, em ambas as geometrias, são derivadas expressões explícitas para as taxas de absorção de partículas em detectores internos ao domínio do problema. A avaliação das taxas de absorção permite testar as formulações obtidas através do conhecido problema fonte-detector, o qual possibilita uma análise comparativa entre os resultados obtidos por meio tanto da adjunta da equação de transporte, quanto pela equação de transporte. Nos testes numéricos, a configuração fonte-detector apresentou resultados com excelente concordância ao utilizar as expressões explícitas para as taxas de absorção. Ainda, a formulação é aplicada em um problema inverso de estimativa de fontes isotrópicas de partículas, em situações nas quais a geometria do meio, bem como as propriedades físicas dos materiais que o compõe são conhecidas, e uma série de leituras de detectores é disponível. Para a resolução do problema inverso, são consideradas a regularização de Tikhonov, bem como a aplicação de técnicas Bayesianas. São estimadas fontes polinomiais e degraus a partir de medições de detectores internos ao domínio do problema. De maneira geral, as estimativas das fontes foram capazes de indicar a localização das fontes internas e, dependendo do nível de ruídos considerado nas medições, estimar a magnitude das fontes. Além disso, nos problemas unidimensionais com fontes polinomiais e bidimensionais, os resultados obtidos via método de Tikhonov iterado foram considerados mais satisfatórios, enquanto nos problemas unidimensionais com fontes degraus o uso de técnicas Bayesianas tenham se mostrado superiores.In this work, the analytical discrete ordinates (ADO) method is applied to derive explicit solutions, with respect to spatial variables, for the discrete ordinates approximation of the multigroup adjoint transport equation in one-dimensional cartesian geometry, and, along with nodal schemes, to derive explicit solutions for the averaged angular fluxes for the discrete ordinate approximation of the monoenergetic adjoint transport equation in two-dimensional cartesian geometry. In addition, explicit expressions for internal detectors absorption rates are derived, which are used to test the method through the well-known source-detector problem, which allows a comparative analysis for absorption rates estimated either by the adjoint of the transport equation or the transport equation itself. In numerical tests, the sourcedetector problem showed excellent agreement when comparing the absorption rates calculated using the adjoint equation with the values obtained by the transport equation. Moreover, the formulation is applied to an isotropic source estimation inverse problem, in situations where the geometry of the medium as well as the physical properties of the materials are known. For this, using the source-detector problem, a linear relationship between the coefficients of the source’s expansion on some basis function and the detector readings is derived. Finally, in order to solve the inverse problem, the iterated Tikhonov regularization and the Metropolis-Hastings algorithm in the context of Bayesian inference are considered. To test the formulation, polynomial sources and step sources are estimated from noisy measurements of internal detectors. In general, the estimates were able to indicate the location of internal sources and, depending on the noise level considered in the measurements, to approximate the magnitude of the sources. In addition, in one-dimensional problems with polynomial sources and two-dimensional problems with step sources, the results obtained through the iterated Tikhonov method were considered more satisfactory, while in the one-dimensional problems with step sources, the use of Bayesian techniques has been shown to be superior.application/pdfporEquação de transporteProblemas inversosOrdenadas discretasSoluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de Matemática e EstatísticaPrograma de Pós-Graduação em Matemática AplicadaPorto Alegre, BR-RS2019doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001118909.pdf.txt001118909.pdf.txtExtracted Texttext/plain299418http://www.lume.ufrgs.br/bitstream/10183/214679/2/001118909.pdf.txt21e92508a7059a96a06e51117135cc7fMD52ORIGINAL001118909.pdfTexto completoapplication/pdf3868742http://www.lume.ufrgs.br/bitstream/10183/214679/1/001118909.pdf4ccdfb1e6f41dd56dfe166e6d4bdb775MD5110183/2146792020-11-06 05:11:05.839995oai:www.lume.ufrgs.br:10183/214679Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532020-11-06T07:11:05Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes
title Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes
spellingShingle Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes
Pazinatto, Cássio Baissvenger
Equação de transporte
Problemas inversos
Ordenadas discretas
title_short Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes
title_full Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes
title_fullStr Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes
title_full_unstemmed Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes
title_sort Soluções explícitas do problema adjunto de transporte de partículas com aplicações em estimativas de fontes
author Pazinatto, Cássio Baissvenger
author_facet Pazinatto, Cássio Baissvenger
author_role author
dc.contributor.author.fl_str_mv Pazinatto, Cássio Baissvenger
dc.contributor.advisor1.fl_str_mv Barichello, Liliane Basso
contributor_str_mv Barichello, Liliane Basso
dc.subject.por.fl_str_mv Equação de transporte
Problemas inversos
Ordenadas discretas
topic Equação de transporte
Problemas inversos
Ordenadas discretas
description Neste trabalho, são derivadas soluções explícitas com respeito à variável espacial para o modelo de multigrupos de energia da adjunta da equação de transporte de partículas neutras, em geometria cartesiana unidimensional através de uma metodologia analítica de ordenadas discretas (método ADO). Em geometria cartesiana bidimensional, são fornecidas soluções explícitas com respeito às variáveis espaciais para os fluxos médios da adjunta da equação de transporte monoenergética, por meio do emprego de esquemas nodais junto da formulação ADO. Além disso, em ambas as geometrias, são derivadas expressões explícitas para as taxas de absorção de partículas em detectores internos ao domínio do problema. A avaliação das taxas de absorção permite testar as formulações obtidas através do conhecido problema fonte-detector, o qual possibilita uma análise comparativa entre os resultados obtidos por meio tanto da adjunta da equação de transporte, quanto pela equação de transporte. Nos testes numéricos, a configuração fonte-detector apresentou resultados com excelente concordância ao utilizar as expressões explícitas para as taxas de absorção. Ainda, a formulação é aplicada em um problema inverso de estimativa de fontes isotrópicas de partículas, em situações nas quais a geometria do meio, bem como as propriedades físicas dos materiais que o compõe são conhecidas, e uma série de leituras de detectores é disponível. Para a resolução do problema inverso, são consideradas a regularização de Tikhonov, bem como a aplicação de técnicas Bayesianas. São estimadas fontes polinomiais e degraus a partir de medições de detectores internos ao domínio do problema. De maneira geral, as estimativas das fontes foram capazes de indicar a localização das fontes internas e, dependendo do nível de ruídos considerado nas medições, estimar a magnitude das fontes. Além disso, nos problemas unidimensionais com fontes polinomiais e bidimensionais, os resultados obtidos via método de Tikhonov iterado foram considerados mais satisfatórios, enquanto nos problemas unidimensionais com fontes degraus o uso de técnicas Bayesianas tenham se mostrado superiores.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2020-11-05T04:09:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/214679
dc.identifier.nrb.pt_BR.fl_str_mv 001118909
url http://hdl.handle.net/10183/214679
identifier_str_mv 001118909
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/214679/2/001118909.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/214679/1/001118909.pdf
bitstream.checksum.fl_str_mv 21e92508a7059a96a06e51117135cc7f
4ccdfb1e6f41dd56dfe166e6d4bdb775
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085537313193984