Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7910 |
Resumo: | At Taylor series elementary functions are applied two algebric methods which converts them into continued fractions. Euler's method causes the convergents of this continued fraction to be exactly equal to partial sums of the series that originated it. Already the convergents of the continued fraction generated by the sucessive substitution method are a rational approximate for the referred function. A contraction process is applied to the continued fractions originated by these methods, which results in new continued fractions, characterized by converges more quickly to the value of the function than the own series. Graphic and numeric comparisons between Taylor series of the function, the continued fractions generated by the methods and its contractions are performed. It is observed that the convergents of the even contraction order 5 of the continued fractions obtained by the sucessive substitution method results, in average, approximately with error in the order of 10-8 of the real value of the analized functions, rate that can be considered very good when it is compared with Taylor's polinomials value of the same order. The described methods have complementary characteristics, which assign to the contraction of its continued fractions a possible and eficient algorithm implementation. |
id |
URPE_1cd1cadab01ac52b644bbf33b85fbb05 |
---|---|
oai_identifier_str |
oai:tede2:tede2/7910 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
SILVA, Thiago Dias OliveiraSILVA, Thiago Dias OliveiraGALVÃO, Eudes NaziazenoGUEDES, Gabriel AraújoBELTRÃO, Eduardo de Melo2019-04-02T13:32:44Z2016-02-29BELTRÃO, Eduardo de Melo. Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas. 2016. 61 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7910At Taylor series elementary functions are applied two algebric methods which converts them into continued fractions. Euler's method causes the convergents of this continued fraction to be exactly equal to partial sums of the series that originated it. Already the convergents of the continued fraction generated by the sucessive substitution method are a rational approximate for the referred function. A contraction process is applied to the continued fractions originated by these methods, which results in new continued fractions, characterized by converges more quickly to the value of the function than the own series. Graphic and numeric comparisons between Taylor series of the function, the continued fractions generated by the methods and its contractions are performed. It is observed that the convergents of the even contraction order 5 of the continued fractions obtained by the sucessive substitution method results, in average, approximately with error in the order of 10-8 of the real value of the analized functions, rate that can be considered very good when it is compared with Taylor's polinomials value of the same order. The described methods have complementary characteristics, which assign to the contraction of its continued fractions a possible and eficient algorithm implementation.As séries de Taylor de funções elementares são aplicados dois métodos algébricos que permitem convertê-las em frações contínuas. O método de Euler faz com que os convergentes dessa fração sejam exatamente iguais às somas parciais da série que a originou. Já os convergentes da fração contínua gerada pelo método das substituições sucessivas são aproximações racionais para a referida função. Um processo de contração é aplicado às frações contínuas provenientes desses métodos, o que resulta em novas frações contínuas, caracterizadas por convergirem mais rapidamente ao valor da função do que as próprias séries. Comparações gráficas e numéricas entre a série de Taylor da função, as frações contínuas geradas pelos métodos e suas contrações são realizadas. Observa-se que os convergentes de ordem cinco da contração par das frações contínuas obtidas pelo método das substituiçõs sucessivas resultam, em média, aproximações com erro na ordem de 10−8 do valor real das funções analisadas, índice que pode ser considerado muito bom quando comparado ao valor dos polinômios de Taylor de mesma ordem. Os métodos descritos possuem características que se complementam, o que atribui à contração de suas frações contínuas uma possível e eficiente implementaçã algorítmica.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-04-02T13:32:44Z No. of bitstreams: 1 Eduardo de Melo Beltrão.pdf: 1278551 bytes, checksum: cbd6044aad46519d69731a759c5ccc19 (MD5)Made available in DSpace on 2019-04-02T13:32:44Z (GMT). No. of bitstreams: 1 Eduardo de Melo Beltrão.pdf: 1278551 bytes, checksum: cbd6044aad46519d69731a759c5ccc19 (MD5) Previous issue date: 2016-02-29application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Matemática (PROFMAT)UFRPEBrasilDepartamento de MatemáticaSéries de TaylorFração contínuaCIENCIAS EXATAS E DA TERRA::MATEMATICAAcelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis7256355350190039125600600600-6155401143231123537-7090823417984401694info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALEduardo de Melo Beltrão.pdfEduardo de Melo Beltrão.pdfapplication/pdf1278551http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7910/2/Eduardo+de+Melo+Beltr%C3%A3o.pdfcbd6044aad46519d69731a759c5ccc19MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7910/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/79102019-04-02 10:32:44.591oai:tede2:tede2/7910Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:16.548816Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas |
title |
Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas |
spellingShingle |
Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas BELTRÃO, Eduardo de Melo Séries de Taylor Fração contínua CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas |
title_full |
Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas |
title_fullStr |
Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas |
title_full_unstemmed |
Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas |
title_sort |
Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas |
author |
BELTRÃO, Eduardo de Melo |
author_facet |
BELTRÃO, Eduardo de Melo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SILVA, Thiago Dias Oliveira |
dc.contributor.referee1.fl_str_mv |
SILVA, Thiago Dias Oliveira |
dc.contributor.referee2.fl_str_mv |
GALVÃO, Eudes Naziazeno |
dc.contributor.referee3.fl_str_mv |
GUEDES, Gabriel Araújo |
dc.contributor.author.fl_str_mv |
BELTRÃO, Eduardo de Melo |
contributor_str_mv |
SILVA, Thiago Dias Oliveira SILVA, Thiago Dias Oliveira GALVÃO, Eudes Naziazeno GUEDES, Gabriel Araújo |
dc.subject.por.fl_str_mv |
Séries de Taylor Fração contínua |
topic |
Séries de Taylor Fração contínua CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
At Taylor series elementary functions are applied two algebric methods which converts them into continued fractions. Euler's method causes the convergents of this continued fraction to be exactly equal to partial sums of the series that originated it. Already the convergents of the continued fraction generated by the sucessive substitution method are a rational approximate for the referred function. A contraction process is applied to the continued fractions originated by these methods, which results in new continued fractions, characterized by converges more quickly to the value of the function than the own series. Graphic and numeric comparisons between Taylor series of the function, the continued fractions generated by the methods and its contractions are performed. It is observed that the convergents of the even contraction order 5 of the continued fractions obtained by the sucessive substitution method results, in average, approximately with error in the order of 10-8 of the real value of the analized functions, rate that can be considered very good when it is compared with Taylor's polinomials value of the same order. The described methods have complementary characteristics, which assign to the contraction of its continued fractions a possible and eficient algorithm implementation. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-02-29 |
dc.date.accessioned.fl_str_mv |
2019-04-02T13:32:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BELTRÃO, Eduardo de Melo. Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas. 2016. 61 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7910 |
identifier_str_mv |
BELTRÃO, Eduardo de Melo. Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas. 2016. 61 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7910 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
7256355350190039125 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-6155401143231123537 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática (PROFMAT) |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Matemática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7910/2/Eduardo+de+Melo+Beltr%C3%A3o.pdf http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7910/1/license.txt |
bitstream.checksum.fl_str_mv |
cbd6044aad46519d69731a759c5ccc19 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102256746364928 |