Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas

Detalhes bibliográficos
Autor(a) principal: BELTRÃO, Eduardo de Melo
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7910
Resumo: At Taylor series elementary functions are applied two algebric methods which converts them into continued fractions. Euler's method causes the convergents of this continued fraction to be exactly equal to partial sums of the series that originated it. Already the convergents of the continued fraction generated by the sucessive substitution method are a rational approximate for the referred function. A contraction process is applied to the continued fractions originated by these methods, which results in new continued fractions, characterized by converges more quickly to the value of the function than the own series. Graphic and numeric comparisons between Taylor series of the function, the continued fractions generated by the methods and its contractions are performed. It is observed that the convergents of the even contraction order 5 of the continued fractions obtained by the sucessive substitution method results, in average, approximately with error in the order of 10-8 of the real value of the analized functions, rate that can be considered very good when it is compared with Taylor's polinomials value of the same order. The described methods have complementary characteristics, which assign to the contraction of its continued fractions a possible and eficient algorithm implementation.
id URPE_1cd1cadab01ac52b644bbf33b85fbb05
oai_identifier_str oai:tede2:tede2/7910
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling SILVA, Thiago Dias OliveiraSILVA, Thiago Dias OliveiraGALVÃO, Eudes NaziazenoGUEDES, Gabriel AraújoBELTRÃO, Eduardo de Melo2019-04-02T13:32:44Z2016-02-29BELTRÃO, Eduardo de Melo. Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas. 2016. 61 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7910At Taylor series elementary functions are applied two algebric methods which converts them into continued fractions. Euler's method causes the convergents of this continued fraction to be exactly equal to partial sums of the series that originated it. Already the convergents of the continued fraction generated by the sucessive substitution method are a rational approximate for the referred function. A contraction process is applied to the continued fractions originated by these methods, which results in new continued fractions, characterized by converges more quickly to the value of the function than the own series. Graphic and numeric comparisons between Taylor series of the function, the continued fractions generated by the methods and its contractions are performed. It is observed that the convergents of the even contraction order 5 of the continued fractions obtained by the sucessive substitution method results, in average, approximately with error in the order of 10-8 of the real value of the analized functions, rate that can be considered very good when it is compared with Taylor's polinomials value of the same order. The described methods have complementary characteristics, which assign to the contraction of its continued fractions a possible and eficient algorithm implementation.As séries de Taylor de funções elementares são aplicados dois métodos algébricos que permitem convertê-las em frações contínuas. O método de Euler faz com que os convergentes dessa fração sejam exatamente iguais às somas parciais da série que a originou. Já os convergentes da fração contínua gerada pelo método das substituições sucessivas são aproximações racionais para a referida função. Um processo de contração é aplicado às frações contínuas provenientes desses métodos, o que resulta em novas frações contínuas, caracterizadas por convergirem mais rapidamente ao valor da função do que as próprias séries. Comparações gráficas e numéricas entre a série de Taylor da função, as frações contínuas geradas pelos métodos e suas contrações são realizadas. Observa-se que os convergentes de ordem cinco da contração par das frações contínuas obtidas pelo método das substituiçõs sucessivas resultam, em média, aproximações com erro na ordem de 10−8 do valor real das funções analisadas, índice que pode ser considerado muito bom quando comparado ao valor dos polinômios de Taylor de mesma ordem. Os métodos descritos possuem características que se complementam, o que atribui à contração de suas frações contínuas uma possível e eficiente implementaçã algorítmica.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-04-02T13:32:44Z No. of bitstreams: 1 Eduardo de Melo Beltrão.pdf: 1278551 bytes, checksum: cbd6044aad46519d69731a759c5ccc19 (MD5)Made available in DSpace on 2019-04-02T13:32:44Z (GMT). No. of bitstreams: 1 Eduardo de Melo Beltrão.pdf: 1278551 bytes, checksum: cbd6044aad46519d69731a759c5ccc19 (MD5) Previous issue date: 2016-02-29application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Matemática (PROFMAT)UFRPEBrasilDepartamento de MatemáticaSéries de TaylorFração contínuaCIENCIAS EXATAS E DA TERRA::MATEMATICAAcelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis7256355350190039125600600600-6155401143231123537-7090823417984401694info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALEduardo de Melo Beltrão.pdfEduardo de Melo Beltrão.pdfapplication/pdf1278551http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7910/2/Eduardo+de+Melo+Beltr%C3%A3o.pdfcbd6044aad46519d69731a759c5ccc19MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7910/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/79102019-04-02 10:32:44.591oai:tede2:tede2/7910Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:16.548816Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
title Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
spellingShingle Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
BELTRÃO, Eduardo de Melo
Séries de Taylor
Fração contínua
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
title_full Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
title_fullStr Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
title_full_unstemmed Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
title_sort Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas
author BELTRÃO, Eduardo de Melo
author_facet BELTRÃO, Eduardo de Melo
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, Thiago Dias Oliveira
dc.contributor.referee1.fl_str_mv SILVA, Thiago Dias Oliveira
dc.contributor.referee2.fl_str_mv GALVÃO, Eudes Naziazeno
dc.contributor.referee3.fl_str_mv GUEDES, Gabriel Araújo
dc.contributor.author.fl_str_mv BELTRÃO, Eduardo de Melo
contributor_str_mv SILVA, Thiago Dias Oliveira
SILVA, Thiago Dias Oliveira
GALVÃO, Eudes Naziazeno
GUEDES, Gabriel Araújo
dc.subject.por.fl_str_mv Séries de Taylor
Fração contínua
topic Séries de Taylor
Fração contínua
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description At Taylor series elementary functions are applied two algebric methods which converts them into continued fractions. Euler's method causes the convergents of this continued fraction to be exactly equal to partial sums of the series that originated it. Already the convergents of the continued fraction generated by the sucessive substitution method are a rational approximate for the referred function. A contraction process is applied to the continued fractions originated by these methods, which results in new continued fractions, characterized by converges more quickly to the value of the function than the own series. Graphic and numeric comparisons between Taylor series of the function, the continued fractions generated by the methods and its contractions are performed. It is observed that the convergents of the even contraction order 5 of the continued fractions obtained by the sucessive substitution method results, in average, approximately with error in the order of 10-8 of the real value of the analized functions, rate that can be considered very good when it is compared with Taylor's polinomials value of the same order. The described methods have complementary characteristics, which assign to the contraction of its continued fractions a possible and eficient algorithm implementation.
publishDate 2016
dc.date.issued.fl_str_mv 2016-02-29
dc.date.accessioned.fl_str_mv 2019-04-02T13:32:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BELTRÃO, Eduardo de Melo. Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas. 2016. 61 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7910
identifier_str_mv BELTRÃO, Eduardo de Melo. Acelerando a convergência da série de Taylor de funções elementares : um método baseado em frações contínuas. 2016. 61 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7910
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 7256355350190039125
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -6155401143231123537
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática (PROFMAT)
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Matemática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7910/2/Eduardo+de+Melo+Beltr%C3%A3o.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7910/1/license.txt
bitstream.checksum.fl_str_mv cbd6044aad46519d69731a759c5ccc19
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102256746364928