Poliedros arquimedianos

Detalhes bibliográficos
Autor(a) principal: NEVES, José Ribamar de Souza
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7893
Resumo: The subject of this dissertation is Archimedean (or semi-regular) polyhedra, solid that are obtained through operations (truncation and snub ) made on regular convex polyhedra. As far as we know, such polyhedra were studied by Archimedes over 2000 years ago, but it was the German astronomer and mathematician Johann Kepler who named them and proved the existence of only 13 (thirteen), except for a class of prisms and anti-prisms. Our main objective is to propose a complete theoretical material on the Archimedean polyhedron theory so that it can be used by high school mathematics teachers as well as for undergraduate students in Mathematics, as well as to present some results obtained through an implementation of a workshop on this topic. From the results obtained in the practical part of the workshop, mainly, we believe that this theme, quite playful, besides stimulating the imagination and the creativity of the students, can really be introduced from high school, through examples and exercises similar to those that will be proposed in this work. In this work we will also show how to construct some polyhedra with the use of Sagemath, a program of free (and open source) software, specially designed to work in the area of Mathematics.
id URPE_1d2ba1fa891caa683cd91ebe66dfa602
oai_identifier_str oai:tede2:tede2/7893
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling SILVA, Bárbara Costa daMACHADO JUNIOR, Ricardo NunesSILVA, Bárba Costa daMACHADO JUNIOR, Ricardo NunesSOUSA, Antonio Fernando Pereira deSILVA, Adriano Regis Melo Rodrigues daNEVES, José Ribamar de Souza2019-03-20T13:05:26Z2017-07-28NEVES, José Ribamar de Souza. Poliedros arquimedianos. 2017. 99 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7893The subject of this dissertation is Archimedean (or semi-regular) polyhedra, solid that are obtained through operations (truncation and snub ) made on regular convex polyhedra. As far as we know, such polyhedra were studied by Archimedes over 2000 years ago, but it was the German astronomer and mathematician Johann Kepler who named them and proved the existence of only 13 (thirteen), except for a class of prisms and anti-prisms. Our main objective is to propose a complete theoretical material on the Archimedean polyhedron theory so that it can be used by high school mathematics teachers as well as for undergraduate students in Mathematics, as well as to present some results obtained through an implementation of a workshop on this topic. From the results obtained in the practical part of the workshop, mainly, we believe that this theme, quite playful, besides stimulating the imagination and the creativity of the students, can really be introduced from high school, through examples and exercises similar to those that will be proposed in this work. In this work we will also show how to construct some polyhedra with the use of Sagemath, a program of free (and open source) software, specially designed to work in the area of Mathematics.O tema desta dissertação é Poliedros Arquimedianos (ou semirregulares), sólidos que são obtidos através de operações (truncamentos e snubiamentos) feitas sobre os poliedros regulares convexos. Até onde se sabe, tais poliedros foram estudados por Arquimedes há mais de 2000 anos, porém foi o astrônomo e matemático alemão Johann Kepler quem os nomeou e provou a existência de apenas 13 (treze), com exceção de uma classe de prismas e de anti-prismas. O nosso principal objetivo é propor uma material teórico completo sobre a teoria dos poliedros arquimedianos para que possa ser utilizado por professores de Matemática do ensino médio e também para alunos do curso de graduação de Licenciatura em Matemática, assim como também apresentar alguns resultados obtidos através da execução de uma oficina sobre esse tema. A partir dos resultados obtidos na parte prática da oficina, principalmente, acreditamos que este tema, bastante lúdico, além de estimular a imaginação e a criatividade dos alunos, realmente pode ser introduzido a partir do ensino médio, através de exemplos e exercícios similares aos que serão propostos neste trabalho. Neste trabalho mostraremos também como construir alguns poliedros com a utilização do Sagemath, programa de Software livre (e de código aberto), criado especialmente para trabalhar na área de Matemática.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-03-20T13:05:25Z No. of bitstreams: 1 Jose Ribamar de Souza Neves.pdf: 3888166 bytes, checksum: 2c9e0a6b50e821987108658e1c49138e (MD5)Made available in DSpace on 2019-03-20T13:05:26Z (GMT). No. of bitstreams: 1 Jose Ribamar de Souza Neves.pdf: 3888166 bytes, checksum: 2c9e0a6b50e821987108658e1c49138e (MD5) Previous issue date: 2017-07-28application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Matemática (PROFMAT)UFRPEBrasilDepartamento de MatemáticaPoliedro regularPoliedro arquimedianoEnsino de matemáticaCIENCIAS EXATAS E DA TERRA::MATEMATICAPoliedros arquimedianosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis7256355350190039125600600600-6155401143231123537-7090823417984401694info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALJose Ribamar de Souza Neves.pdfJose Ribamar de Souza Neves.pdfapplication/pdf3888166http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7893/2/Jose+Ribamar+de+Souza+Neves.pdf2c9e0a6b50e821987108658e1c49138eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7893/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/78932019-03-20 10:05:26.012oai:tede2:tede2/7893Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:15.253197Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Poliedros arquimedianos
title Poliedros arquimedianos
spellingShingle Poliedros arquimedianos
NEVES, José Ribamar de Souza
Poliedro regular
Poliedro arquimediano
Ensino de matemática
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Poliedros arquimedianos
title_full Poliedros arquimedianos
title_fullStr Poliedros arquimedianos
title_full_unstemmed Poliedros arquimedianos
title_sort Poliedros arquimedianos
author NEVES, José Ribamar de Souza
author_facet NEVES, José Ribamar de Souza
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, Bárbara Costa da
dc.contributor.advisor-co1.fl_str_mv MACHADO JUNIOR, Ricardo Nunes
dc.contributor.referee1.fl_str_mv SILVA, Bárba Costa da
dc.contributor.referee2.fl_str_mv MACHADO JUNIOR, Ricardo Nunes
dc.contributor.referee3.fl_str_mv SOUSA, Antonio Fernando Pereira de
dc.contributor.referee4.fl_str_mv SILVA, Adriano Regis Melo Rodrigues da
dc.contributor.author.fl_str_mv NEVES, José Ribamar de Souza
contributor_str_mv SILVA, Bárbara Costa da
MACHADO JUNIOR, Ricardo Nunes
SILVA, Bárba Costa da
MACHADO JUNIOR, Ricardo Nunes
SOUSA, Antonio Fernando Pereira de
SILVA, Adriano Regis Melo Rodrigues da
dc.subject.por.fl_str_mv Poliedro regular
Poliedro arquimediano
Ensino de matemática
topic Poliedro regular
Poliedro arquimediano
Ensino de matemática
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description The subject of this dissertation is Archimedean (or semi-regular) polyhedra, solid that are obtained through operations (truncation and snub ) made on regular convex polyhedra. As far as we know, such polyhedra were studied by Archimedes over 2000 years ago, but it was the German astronomer and mathematician Johann Kepler who named them and proved the existence of only 13 (thirteen), except for a class of prisms and anti-prisms. Our main objective is to propose a complete theoretical material on the Archimedean polyhedron theory so that it can be used by high school mathematics teachers as well as for undergraduate students in Mathematics, as well as to present some results obtained through an implementation of a workshop on this topic. From the results obtained in the practical part of the workshop, mainly, we believe that this theme, quite playful, besides stimulating the imagination and the creativity of the students, can really be introduced from high school, through examples and exercises similar to those that will be proposed in this work. In this work we will also show how to construct some polyhedra with the use of Sagemath, a program of free (and open source) software, specially designed to work in the area of Mathematics.
publishDate 2017
dc.date.issued.fl_str_mv 2017-07-28
dc.date.accessioned.fl_str_mv 2019-03-20T13:05:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NEVES, José Ribamar de Souza. Poliedros arquimedianos. 2017. 99 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7893
identifier_str_mv NEVES, José Ribamar de Souza. Poliedros arquimedianos. 2017. 99 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7893
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 7256355350190039125
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -6155401143231123537
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática (PROFMAT)
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Matemática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7893/2/Jose+Ribamar+de+Souza+Neves.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7893/1/license.txt
bitstream.checksum.fl_str_mv 2c9e0a6b50e821987108658e1c49138e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102256649895936