Cópulas para combinação de modelos de séries temporais

Detalhes bibliográficos
Autor(a) principal: ASSIS, Thaíze Fernandes Oliveira de
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7249
Resumo: Time series combined forecasts have shown better results than individual models in terms of both accuracy as efficiency. Alternatives of aggregation well adopted are linear combination, which include methods such as the simple average and the weighted average resultant method of minimum variance here named Classic Model (CM) due to coincide with the maximum likelihood estimator under the assumption that the errors of the individual models follow a multivariate normal distribution. Thus, it has been usual to assume the normality of the errors of the individual models. However, improper assumption of normality may result in biased estimators and thus misleading estimates of the aggregated model. This thesis proposes a method for maximum likelihood predictors focused on aggregating time series forecasting models through copulas, where the errors of these individual models can not be normally distributed. The models via copulas are multivariate functions that operate on the marginal probability distribution, allowing the modeling of the prediction errors, and after, the dependency structure between these predictors. The usefulness of the proposed combined model via copula Frank and Gumbel is illustrated by study eight phenomena of the real world: three fish growth series (yellow tuna, striped seabream and bigeye tuna species), four financial series (Nasdaq (ND), Google (GG), S&P500 (SP) and Dow jones (DJ) and one time series of precipitation. For fish growth series, the following individual models were considered: VBGM (Von Bertalanffy Growth Model), Gompertz, logistic, generalized VBGM and Schnute-Richards. Regarding financial ND series, GG, SP and DJ, the individual models for each case are: ANN (Artificial Neural Network) TAEF (Timedelay Added Evolutionary Forecasting) and ARIMA (AutoRegressive Integrated Moving Average). And for the series of precipitation, nine GARCH (Generalized Autoregressive Conditional heteroscedasticity) are involved. The performance of the proposed combined model is highlighted by means of a comparison with the individual and combined models SA and MC through the Mean Squared Error (MSE). In this sense, it can clearly be seen the usefulness of the combined estimator proposed via Frank and Gumbel copulas. These combined estimators achieve better results when at least one marginal distribution of errors of individuais models not follow a normal distribution. Discussions about the best performance of these copulas in combining determined models, to the detriment of all those available, are also presented.
id URPE_8f328dcff5f92c7d4012f4e0facf616a
oai_identifier_str oai:tede2:tede2/7249
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling FERREIRA, Tiago Alessandro EspínolaFIRMINO, Paulo Renato AlvesOLIVEIRA, Adriano Lorena Inácio deRAMOS, Manoel Wallace AlvesMATTOS NETO, Paulo Salgado Gomes deSILVA, Ronaldo Venâncio dahttp://lattes.cnpq.br/9019148526286520ASSIS, Thaíze Fernandes Oliveira de2018-05-15T14:12:27Z2016-06-29ASSIS, Thaíze Fernandes Oliveira de. Cópulas para combinação de modelos de séries temporais. 2016. 128 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7249Time series combined forecasts have shown better results than individual models in terms of both accuracy as efficiency. Alternatives of aggregation well adopted are linear combination, which include methods such as the simple average and the weighted average resultant method of minimum variance here named Classic Model (CM) due to coincide with the maximum likelihood estimator under the assumption that the errors of the individual models follow a multivariate normal distribution. Thus, it has been usual to assume the normality of the errors of the individual models. However, improper assumption of normality may result in biased estimators and thus misleading estimates of the aggregated model. This thesis proposes a method for maximum likelihood predictors focused on aggregating time series forecasting models through copulas, where the errors of these individual models can not be normally distributed. The models via copulas are multivariate functions that operate on the marginal probability distribution, allowing the modeling of the prediction errors, and after, the dependency structure between these predictors. The usefulness of the proposed combined model via copula Frank and Gumbel is illustrated by study eight phenomena of the real world: three fish growth series (yellow tuna, striped seabream and bigeye tuna species), four financial series (Nasdaq (ND), Google (GG), S&P500 (SP) and Dow jones (DJ) and one time series of precipitation. For fish growth series, the following individual models were considered: VBGM (Von Bertalanffy Growth Model), Gompertz, logistic, generalized VBGM and Schnute-Richards. Regarding financial ND series, GG, SP and DJ, the individual models for each case are: ANN (Artificial Neural Network) TAEF (Timedelay Added Evolutionary Forecasting) and ARIMA (AutoRegressive Integrated Moving Average). And for the series of precipitation, nine GARCH (Generalized Autoregressive Conditional heteroscedasticity) are involved. The performance of the proposed combined model is highlighted by means of a comparison with the individual and combined models SA and MC through the Mean Squared Error (MSE). In this sense, it can clearly be seen the usefulness of the combined estimator proposed via Frank and Gumbel copulas. These combined estimators achieve better results when at least one marginal distribution of errors of individuais models not follow a normal distribution. Discussions about the best performance of these copulas in combining determined models, to the detriment of all those available, are also presented.Previsões combinadas de séries temporais têm mostrado resultados superiores aos modelos individuais tanto em termos de acurácia quanto de eficiência. Uma das alternativas de agregação bastante adotadas são as combinações lineares, que contemplam métodos como a média simples (SA do inglês Simple Aveage) e a média ponderada, resultante do método de mínima variância, aqui nomeado de Modelo Clássico (MC), devido a coincidir com o estimador de máxima verossimilhança sob a suposição de que os erros dos modelos individuais seguem uma distribuição normal multivariada. Desta maneira, tem sido usual supor a normalidade dos erros dos modelos individuais. Contudo, a suposição inadequada de normalidade pode resultar em estimadores viesados e, assim, estimativas equivocadas do modelo agregado. A presente tese propõe um método para obter preditores de máxima verossimilhança voltados à agregação de modelos de previsão de séries temporais por meio de cópulas, onde os erros desses modelos individuais podem não ser normalmente distribuídos. Os modelos via cópulas são funções multivariadas que operam na distribuição de probabilidade marginal, permitindo modelar os resíduos de previsão e, em seguida, a estrutura de dependência entre estes preditores. A utilidade do modelo combinado proposto mediante as cópulas Frank e Gumbel é ilustrada por meio do estudo de oito fenômenos do mundo real: três séries de crescimento de peixes (espécies yellow tuna, striped seabream e bigeye tuna), quatro séries financeiras (Nasdaq (ND), Google (GG), S&P500 (SP) e Dow jones (DJ)) e uma série de precipitação. Para as séries de crescimento de peixes, os seguintes modelos individuais foram agregados: VBGM (Von Bertalanffy Growth Model), Gompertz, logístico, VBGM generalizado e Schnute-Richards. Em relação às séries financeiras ND, GG, SP e DJ, os modelos individuais para cada caso são: ANN (Artificial Neural Network), TAEF (Time-delay Added Evolutionary Forecasting) e ARIMA (Auto-regressivo integrado de média móvel). E para a série de precipitação, são envolvidos nove modelos GARCH (Generalized Autoregressive Conditional Heteroscedasticity). O desempenho do modelo combinado proposto é destacado pela comparação com os modelos individuais e combinados SA e MC, através do Erro Quadrático Médio (EQM). Neste sentido, observa-se claramente a utilidade do estimador combinado proposto via cópulas Frank e Gumbel. Estes estimadores combinados apresentam-se ainda com mais destaque quando se trata do caso em que pelo menos uma das distribuições marginais dos erros dos modelos individuais não seguem uma distribuição normal. Discussões sobre o melhor desempenho destas cópulas em combinar determinados modelos, em detrimento de todos aqueles disponíveis, são também apresentadas.Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-05-15T14:12:27Z No. of bitstreams: 1 Thaize Fernandes Oliveira de Assis.pdf: 4665598 bytes, checksum: 11c912695afd97c1b15ec1c49cc0a093 (MD5)Made available in DSpace on 2018-05-15T14:12:27Z (GMT). No. of bitstreams: 1 Thaize Fernandes Oliveira de Assis.pdf: 4665598 bytes, checksum: 11c912695afd97c1b15ec1c49cc0a093 (MD5) Previous issue date: 2016-06-29Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaModelo de previsãoSérie temporalCópulaCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICACópulas para combinação de modelos de séries temporaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis768382242446187918600600600600-6774555140396120501-58364078281851435172075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALThaize Fernandes Oliveira de Assis.pdfThaize Fernandes Oliveira de Assis.pdfapplication/pdf4665598http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7249/2/Thaize+Fernandes+Oliveira+de+Assis.pdf11c912695afd97c1b15ec1c49cc0a093MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7249/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/72492018-05-15 11:12:27.914oai:tede2:tede2/7249Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:35:24.170267Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Cópulas para combinação de modelos de séries temporais
title Cópulas para combinação de modelos de séries temporais
spellingShingle Cópulas para combinação de modelos de séries temporais
ASSIS, Thaíze Fernandes Oliveira de
Modelo de previsão
Série temporal
Cópula
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Cópulas para combinação de modelos de séries temporais
title_full Cópulas para combinação de modelos de séries temporais
title_fullStr Cópulas para combinação de modelos de séries temporais
title_full_unstemmed Cópulas para combinação de modelos de séries temporais
title_sort Cópulas para combinação de modelos de séries temporais
author ASSIS, Thaíze Fernandes Oliveira de
author_facet ASSIS, Thaíze Fernandes Oliveira de
author_role author
dc.contributor.advisor1.fl_str_mv FERREIRA, Tiago Alessandro Espínola
dc.contributor.advisor-co1.fl_str_mv FIRMINO, Paulo Renato Alves
dc.contributor.referee1.fl_str_mv OLIVEIRA, Adriano Lorena Inácio de
dc.contributor.referee2.fl_str_mv RAMOS, Manoel Wallace Alves
dc.contributor.referee3.fl_str_mv MATTOS NETO, Paulo Salgado Gomes de
dc.contributor.referee4.fl_str_mv SILVA, Ronaldo Venâncio da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9019148526286520
dc.contributor.author.fl_str_mv ASSIS, Thaíze Fernandes Oliveira de
contributor_str_mv FERREIRA, Tiago Alessandro Espínola
FIRMINO, Paulo Renato Alves
OLIVEIRA, Adriano Lorena Inácio de
RAMOS, Manoel Wallace Alves
MATTOS NETO, Paulo Salgado Gomes de
SILVA, Ronaldo Venâncio da
dc.subject.por.fl_str_mv Modelo de previsão
Série temporal
Cópula
topic Modelo de previsão
Série temporal
Cópula
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description Time series combined forecasts have shown better results than individual models in terms of both accuracy as efficiency. Alternatives of aggregation well adopted are linear combination, which include methods such as the simple average and the weighted average resultant method of minimum variance here named Classic Model (CM) due to coincide with the maximum likelihood estimator under the assumption that the errors of the individual models follow a multivariate normal distribution. Thus, it has been usual to assume the normality of the errors of the individual models. However, improper assumption of normality may result in biased estimators and thus misleading estimates of the aggregated model. This thesis proposes a method for maximum likelihood predictors focused on aggregating time series forecasting models through copulas, where the errors of these individual models can not be normally distributed. The models via copulas are multivariate functions that operate on the marginal probability distribution, allowing the modeling of the prediction errors, and after, the dependency structure between these predictors. The usefulness of the proposed combined model via copula Frank and Gumbel is illustrated by study eight phenomena of the real world: three fish growth series (yellow tuna, striped seabream and bigeye tuna species), four financial series (Nasdaq (ND), Google (GG), S&P500 (SP) and Dow jones (DJ) and one time series of precipitation. For fish growth series, the following individual models were considered: VBGM (Von Bertalanffy Growth Model), Gompertz, logistic, generalized VBGM and Schnute-Richards. Regarding financial ND series, GG, SP and DJ, the individual models for each case are: ANN (Artificial Neural Network) TAEF (Timedelay Added Evolutionary Forecasting) and ARIMA (AutoRegressive Integrated Moving Average). And for the series of precipitation, nine GARCH (Generalized Autoregressive Conditional heteroscedasticity) are involved. The performance of the proposed combined model is highlighted by means of a comparison with the individual and combined models SA and MC through the Mean Squared Error (MSE). In this sense, it can clearly be seen the usefulness of the combined estimator proposed via Frank and Gumbel copulas. These combined estimators achieve better results when at least one marginal distribution of errors of individuais models not follow a normal distribution. Discussions about the best performance of these copulas in combining determined models, to the detriment of all those available, are also presented.
publishDate 2016
dc.date.issued.fl_str_mv 2016-06-29
dc.date.accessioned.fl_str_mv 2018-05-15T14:12:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ASSIS, Thaíze Fernandes Oliveira de. Cópulas para combinação de modelos de séries temporais. 2016. 128 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7249
identifier_str_mv ASSIS, Thaíze Fernandes Oliveira de. Cópulas para combinação de modelos de séries temporais. 2016. 128 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7249
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 768382242446187918
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv -5836407828185143517
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biometria e Estatística Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7249/2/Thaize+Fernandes+Oliveira+de+Assis.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7249/1/license.txt
bitstream.checksum.fl_str_mv 11c912695afd97c1b15ec1c49cc0a093
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102247746437120