Cópulas para combinação de modelos de séries temporais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7249 |
Resumo: | Time series combined forecasts have shown better results than individual models in terms of both accuracy as efficiency. Alternatives of aggregation well adopted are linear combination, which include methods such as the simple average and the weighted average resultant method of minimum variance here named Classic Model (CM) due to coincide with the maximum likelihood estimator under the assumption that the errors of the individual models follow a multivariate normal distribution. Thus, it has been usual to assume the normality of the errors of the individual models. However, improper assumption of normality may result in biased estimators and thus misleading estimates of the aggregated model. This thesis proposes a method for maximum likelihood predictors focused on aggregating time series forecasting models through copulas, where the errors of these individual models can not be normally distributed. The models via copulas are multivariate functions that operate on the marginal probability distribution, allowing the modeling of the prediction errors, and after, the dependency structure between these predictors. The usefulness of the proposed combined model via copula Frank and Gumbel is illustrated by study eight phenomena of the real world: three fish growth series (yellow tuna, striped seabream and bigeye tuna species), four financial series (Nasdaq (ND), Google (GG), S&P500 (SP) and Dow jones (DJ) and one time series of precipitation. For fish growth series, the following individual models were considered: VBGM (Von Bertalanffy Growth Model), Gompertz, logistic, generalized VBGM and Schnute-Richards. Regarding financial ND series, GG, SP and DJ, the individual models for each case are: ANN (Artificial Neural Network) TAEF (Timedelay Added Evolutionary Forecasting) and ARIMA (AutoRegressive Integrated Moving Average). And for the series of precipitation, nine GARCH (Generalized Autoregressive Conditional heteroscedasticity) are involved. The performance of the proposed combined model is highlighted by means of a comparison with the individual and combined models SA and MC through the Mean Squared Error (MSE). In this sense, it can clearly be seen the usefulness of the combined estimator proposed via Frank and Gumbel copulas. These combined estimators achieve better results when at least one marginal distribution of errors of individuais models not follow a normal distribution. Discussions about the best performance of these copulas in combining determined models, to the detriment of all those available, are also presented. |
id |
URPE_8f328dcff5f92c7d4012f4e0facf616a |
---|---|
oai_identifier_str |
oai:tede2:tede2/7249 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
FERREIRA, Tiago Alessandro EspínolaFIRMINO, Paulo Renato AlvesOLIVEIRA, Adriano Lorena Inácio deRAMOS, Manoel Wallace AlvesMATTOS NETO, Paulo Salgado Gomes deSILVA, Ronaldo Venâncio dahttp://lattes.cnpq.br/9019148526286520ASSIS, Thaíze Fernandes Oliveira de2018-05-15T14:12:27Z2016-06-29ASSIS, Thaíze Fernandes Oliveira de. Cópulas para combinação de modelos de séries temporais. 2016. 128 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7249Time series combined forecasts have shown better results than individual models in terms of both accuracy as efficiency. Alternatives of aggregation well adopted are linear combination, which include methods such as the simple average and the weighted average resultant method of minimum variance here named Classic Model (CM) due to coincide with the maximum likelihood estimator under the assumption that the errors of the individual models follow a multivariate normal distribution. Thus, it has been usual to assume the normality of the errors of the individual models. However, improper assumption of normality may result in biased estimators and thus misleading estimates of the aggregated model. This thesis proposes a method for maximum likelihood predictors focused on aggregating time series forecasting models through copulas, where the errors of these individual models can not be normally distributed. The models via copulas are multivariate functions that operate on the marginal probability distribution, allowing the modeling of the prediction errors, and after, the dependency structure between these predictors. The usefulness of the proposed combined model via copula Frank and Gumbel is illustrated by study eight phenomena of the real world: three fish growth series (yellow tuna, striped seabream and bigeye tuna species), four financial series (Nasdaq (ND), Google (GG), S&P500 (SP) and Dow jones (DJ) and one time series of precipitation. For fish growth series, the following individual models were considered: VBGM (Von Bertalanffy Growth Model), Gompertz, logistic, generalized VBGM and Schnute-Richards. Regarding financial ND series, GG, SP and DJ, the individual models for each case are: ANN (Artificial Neural Network) TAEF (Timedelay Added Evolutionary Forecasting) and ARIMA (AutoRegressive Integrated Moving Average). And for the series of precipitation, nine GARCH (Generalized Autoregressive Conditional heteroscedasticity) are involved. The performance of the proposed combined model is highlighted by means of a comparison with the individual and combined models SA and MC through the Mean Squared Error (MSE). In this sense, it can clearly be seen the usefulness of the combined estimator proposed via Frank and Gumbel copulas. These combined estimators achieve better results when at least one marginal distribution of errors of individuais models not follow a normal distribution. Discussions about the best performance of these copulas in combining determined models, to the detriment of all those available, are also presented.Previsões combinadas de séries temporais têm mostrado resultados superiores aos modelos individuais tanto em termos de acurácia quanto de eficiência. Uma das alternativas de agregação bastante adotadas são as combinações lineares, que contemplam métodos como a média simples (SA do inglês Simple Aveage) e a média ponderada, resultante do método de mínima variância, aqui nomeado de Modelo Clássico (MC), devido a coincidir com o estimador de máxima verossimilhança sob a suposição de que os erros dos modelos individuais seguem uma distribuição normal multivariada. Desta maneira, tem sido usual supor a normalidade dos erros dos modelos individuais. Contudo, a suposição inadequada de normalidade pode resultar em estimadores viesados e, assim, estimativas equivocadas do modelo agregado. A presente tese propõe um método para obter preditores de máxima verossimilhança voltados à agregação de modelos de previsão de séries temporais por meio de cópulas, onde os erros desses modelos individuais podem não ser normalmente distribuídos. Os modelos via cópulas são funções multivariadas que operam na distribuição de probabilidade marginal, permitindo modelar os resíduos de previsão e, em seguida, a estrutura de dependência entre estes preditores. A utilidade do modelo combinado proposto mediante as cópulas Frank e Gumbel é ilustrada por meio do estudo de oito fenômenos do mundo real: três séries de crescimento de peixes (espécies yellow tuna, striped seabream e bigeye tuna), quatro séries financeiras (Nasdaq (ND), Google (GG), S&P500 (SP) e Dow jones (DJ)) e uma série de precipitação. Para as séries de crescimento de peixes, os seguintes modelos individuais foram agregados: VBGM (Von Bertalanffy Growth Model), Gompertz, logístico, VBGM generalizado e Schnute-Richards. Em relação às séries financeiras ND, GG, SP e DJ, os modelos individuais para cada caso são: ANN (Artificial Neural Network), TAEF (Time-delay Added Evolutionary Forecasting) e ARIMA (Auto-regressivo integrado de média móvel). E para a série de precipitação, são envolvidos nove modelos GARCH (Generalized Autoregressive Conditional Heteroscedasticity). O desempenho do modelo combinado proposto é destacado pela comparação com os modelos individuais e combinados SA e MC, através do Erro Quadrático Médio (EQM). Neste sentido, observa-se claramente a utilidade do estimador combinado proposto via cópulas Frank e Gumbel. Estes estimadores combinados apresentam-se ainda com mais destaque quando se trata do caso em que pelo menos uma das distribuições marginais dos erros dos modelos individuais não seguem uma distribuição normal. Discussões sobre o melhor desempenho destas cópulas em combinar determinados modelos, em detrimento de todos aqueles disponíveis, são também apresentadas.Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-05-15T14:12:27Z No. of bitstreams: 1 Thaize Fernandes Oliveira de Assis.pdf: 4665598 bytes, checksum: 11c912695afd97c1b15ec1c49cc0a093 (MD5)Made available in DSpace on 2018-05-15T14:12:27Z (GMT). No. of bitstreams: 1 Thaize Fernandes Oliveira de Assis.pdf: 4665598 bytes, checksum: 11c912695afd97c1b15ec1c49cc0a093 (MD5) Previous issue date: 2016-06-29Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaModelo de previsãoSérie temporalCópulaCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICACópulas para combinação de modelos de séries temporaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis768382242446187918600600600600-6774555140396120501-58364078281851435172075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALThaize Fernandes Oliveira de Assis.pdfThaize Fernandes Oliveira de Assis.pdfapplication/pdf4665598http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7249/2/Thaize+Fernandes+Oliveira+de+Assis.pdf11c912695afd97c1b15ec1c49cc0a093MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7249/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/72492018-05-15 11:12:27.914oai:tede2:tede2/7249Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:35:24.170267Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Cópulas para combinação de modelos de séries temporais |
title |
Cópulas para combinação de modelos de séries temporais |
spellingShingle |
Cópulas para combinação de modelos de séries temporais ASSIS, Thaíze Fernandes Oliveira de Modelo de previsão Série temporal Cópula CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Cópulas para combinação de modelos de séries temporais |
title_full |
Cópulas para combinação de modelos de séries temporais |
title_fullStr |
Cópulas para combinação de modelos de séries temporais |
title_full_unstemmed |
Cópulas para combinação de modelos de séries temporais |
title_sort |
Cópulas para combinação de modelos de séries temporais |
author |
ASSIS, Thaíze Fernandes Oliveira de |
author_facet |
ASSIS, Thaíze Fernandes Oliveira de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
FERREIRA, Tiago Alessandro Espínola |
dc.contributor.advisor-co1.fl_str_mv |
FIRMINO, Paulo Renato Alves |
dc.contributor.referee1.fl_str_mv |
OLIVEIRA, Adriano Lorena Inácio de |
dc.contributor.referee2.fl_str_mv |
RAMOS, Manoel Wallace Alves |
dc.contributor.referee3.fl_str_mv |
MATTOS NETO, Paulo Salgado Gomes de |
dc.contributor.referee4.fl_str_mv |
SILVA, Ronaldo Venâncio da |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9019148526286520 |
dc.contributor.author.fl_str_mv |
ASSIS, Thaíze Fernandes Oliveira de |
contributor_str_mv |
FERREIRA, Tiago Alessandro Espínola FIRMINO, Paulo Renato Alves OLIVEIRA, Adriano Lorena Inácio de RAMOS, Manoel Wallace Alves MATTOS NETO, Paulo Salgado Gomes de SILVA, Ronaldo Venâncio da |
dc.subject.por.fl_str_mv |
Modelo de previsão Série temporal Cópula |
topic |
Modelo de previsão Série temporal Cópula CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
Time series combined forecasts have shown better results than individual models in terms of both accuracy as efficiency. Alternatives of aggregation well adopted are linear combination, which include methods such as the simple average and the weighted average resultant method of minimum variance here named Classic Model (CM) due to coincide with the maximum likelihood estimator under the assumption that the errors of the individual models follow a multivariate normal distribution. Thus, it has been usual to assume the normality of the errors of the individual models. However, improper assumption of normality may result in biased estimators and thus misleading estimates of the aggregated model. This thesis proposes a method for maximum likelihood predictors focused on aggregating time series forecasting models through copulas, where the errors of these individual models can not be normally distributed. The models via copulas are multivariate functions that operate on the marginal probability distribution, allowing the modeling of the prediction errors, and after, the dependency structure between these predictors. The usefulness of the proposed combined model via copula Frank and Gumbel is illustrated by study eight phenomena of the real world: three fish growth series (yellow tuna, striped seabream and bigeye tuna species), four financial series (Nasdaq (ND), Google (GG), S&P500 (SP) and Dow jones (DJ) and one time series of precipitation. For fish growth series, the following individual models were considered: VBGM (Von Bertalanffy Growth Model), Gompertz, logistic, generalized VBGM and Schnute-Richards. Regarding financial ND series, GG, SP and DJ, the individual models for each case are: ANN (Artificial Neural Network) TAEF (Timedelay Added Evolutionary Forecasting) and ARIMA (AutoRegressive Integrated Moving Average). And for the series of precipitation, nine GARCH (Generalized Autoregressive Conditional heteroscedasticity) are involved. The performance of the proposed combined model is highlighted by means of a comparison with the individual and combined models SA and MC through the Mean Squared Error (MSE). In this sense, it can clearly be seen the usefulness of the combined estimator proposed via Frank and Gumbel copulas. These combined estimators achieve better results when at least one marginal distribution of errors of individuais models not follow a normal distribution. Discussions about the best performance of these copulas in combining determined models, to the detriment of all those available, are also presented. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-06-29 |
dc.date.accessioned.fl_str_mv |
2018-05-15T14:12:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ASSIS, Thaíze Fernandes Oliveira de. Cópulas para combinação de modelos de séries temporais. 2016. 128 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7249 |
identifier_str_mv |
ASSIS, Thaíze Fernandes Oliveira de. Cópulas para combinação de modelos de séries temporais. 2016. 128 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7249 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
768382242446187918 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-6774555140396120501 |
dc.relation.cnpq.fl_str_mv |
-5836407828185143517 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biometria e Estatística Aplicada |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Estatística e Informática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7249/2/Thaize+Fernandes+Oliveira+de+Assis.pdf http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7249/1/license.txt |
bitstream.checksum.fl_str_mv |
11c912695afd97c1b15ec1c49cc0a093 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102247746437120 |