Uma priori beta para distribuição binomial negativa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4537 |
Resumo: | This dissertation is being dealt with a discrete distribution based on Bernoulli trials, which is the Negative Binomial distribution. The main objective is to propose a new non-informative prior distribution for the Negative Binomial model, which is being termed as a possible prior distribution Beta(0; 0), which is an improper distribution. This distribution is also known for the Binomial model as Haldane prior, but for the Negative Binomial model there are no studies to date. The study of the behavior of this prior was based on Bayesian and classical contexts. The idea of using a non-informative prior is the desire to make statistical inference based on the minimum of information prior subjective as possible. Well, makes it possible to compare the results of classical inference that uses only sample information, for example, the maximum likelihood estimator. When is compared the Beta(0; 0) distribution with the Bayes-Laplace prior and Jeffreys prior, based on the Bayesian estimators (posterior mean and posterior mode) and the maximum likelihood estimator, note that the possible Beta(0; 0) prior is less informative than the others prior. It is also verified that is prior possible is a limited distribution in parameter space, thus, an important feature for non-informative prior. The main argument shows that the possible Beta(0; 0) prior is adequate, when it is applied in a predictive posterior distribution for Negative Binomial model, leading the a Beta-Negative Binomial distribution (which corresponds the a hypergeometric multiplied by a probability). All observations citas are strengthened by several studies, such as: basic concepts related to Bayesian Inference and concepts of the negative binomial distribution and Beta-Negative Binomial (a mixture of Beta with the negative binomial) distribution. |
id |
URPE_cd457b1a52e71052ad3f3eeee67ed5ac |
---|---|
oai_identifier_str |
oai:tede2:tede2/4537 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
SANTOS, Eufrázio de SouzaCUNHA FILHO, MoacyrSTOSIC, BorkoFIGUEIRÔA, Manuel Luizhttp://lattes.cnpq.br/0479940625032580OLIVEIRA, Cícero Carlos Felix de2016-05-25T16:16:39Z2011-07-08OLIVEIRA, Cícero Carlos Felix de. Uma priori beta para distribuição binomial negativa. 2011. 68 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4537This dissertation is being dealt with a discrete distribution based on Bernoulli trials, which is the Negative Binomial distribution. The main objective is to propose a new non-informative prior distribution for the Negative Binomial model, which is being termed as a possible prior distribution Beta(0; 0), which is an improper distribution. This distribution is also known for the Binomial model as Haldane prior, but for the Negative Binomial model there are no studies to date. The study of the behavior of this prior was based on Bayesian and classical contexts. The idea of using a non-informative prior is the desire to make statistical inference based on the minimum of information prior subjective as possible. Well, makes it possible to compare the results of classical inference that uses only sample information, for example, the maximum likelihood estimator. When is compared the Beta(0; 0) distribution with the Bayes-Laplace prior and Jeffreys prior, based on the Bayesian estimators (posterior mean and posterior mode) and the maximum likelihood estimator, note that the possible Beta(0; 0) prior is less informative than the others prior. It is also verified that is prior possible is a limited distribution in parameter space, thus, an important feature for non-informative prior. The main argument shows that the possible Beta(0; 0) prior is adequate, when it is applied in a predictive posterior distribution for Negative Binomial model, leading the a Beta-Negative Binomial distribution (which corresponds the a hypergeometric multiplied by a probability). All observations citas are strengthened by several studies, such as: basic concepts related to Bayesian Inference and concepts of the negative binomial distribution and Beta-Negative Binomial (a mixture of Beta with the negative binomial) distribution.Nesta dissertação está sendo abordado uma distribuição discreta baseada em ensaios de Bernoulli, que é a distribuição Binomial Negativa. O objetivo principal é prôpor uma nova distribuição a priori não informativa para o modelo Binomial Negativa, que está sendo denominado como uma possível distribuição a priori Beta(0; 0), que é uma distribuição imprópria. Essa distribuição também é conhecida para o modelo Binomial como a priori de Haldane, mas para o modelo Binomial Negativa não há nenhum estudo até o momento. O estudo do comportamento desta a priori foi baseada nos contextos bayesiano e clássico. A ideia da utilização de uma a priori não informativa é o desejo de fazer inferência estatística baseada no mínimo de informação subjetiva a priori quanto seja possível. Assim, torna possível a comparação com os resultados da inferência clássica que só usa informação amostral, como por exemplo, o estimador de máxima verossimilhança. Quando é comparado a distribuição Beta(0; 0) com a priori de Bayes - Laplace e a priori de Jeffreys, baseado-se nos estimadores bayesiano (média a posteriori e moda a posteriori) e no estimador de máxima verossimilhança, nota-se que a possível a priori Beta(0; 0) é menos informativa do que as outras a priori. É verificado também, que esta possível a priori é uma distribuição limitada no espaço paramétrico, sendo assim, uma característica importante para a priori não informativa. O principal argumento mostra que a possível a priori Beta(0; 0) é adequada, quando ela é aplicada numa distribuição a posteriori preditiva para modelo Binomial Negativa, levando a uma distribuição Beta Binomial Negativa (que corresponde a uma hipergeométrica multiplicada por uma probabilidade). Todas as observações citadas são fortalecidas por alguns estudos feitos, tais como: conceitos básicos associados à Inferência Bayesiana e conceitos das distribuições Binomial Negativa e Beta Binomial Negativa (que uma mistura da Beta com a Binomial Negativa).Submitted by (ana.araujo@ufrpe.br) on 2016-05-25T16:16:39Z No. of bitstreams: 1 Cicero Carlos Felix de Oliveira.pdf: 934310 bytes, checksum: 4f4332b0b319f6bf33cdc1d615c36324 (MD5)Made available in DSpace on 2016-05-25T16:16:39Z (GMT). No. of bitstreams: 1 Cicero Carlos Felix de Oliveira.pdf: 934310 bytes, checksum: 4f4332b0b319f6bf33cdc1d615c36324 (MD5) Previous issue date: 2011-07-08application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaDistribuição binomial negativaInferência bayesianaDistribuição betaPriore não informativaCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAUma priori beta para distribuição binomial negativainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis768382242446187918600600600-6774555140396120501-5836407828185143517info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4537/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51ORIGINALCicero Carlos Felix de Oliveira.pdfCicero Carlos Felix de Oliveira.pdfapplication/pdf934310http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4537/2/Cicero+Carlos+Felix+de+Oliveira.pdf4f4332b0b319f6bf33cdc1d615c36324MD52tede2/45372019-08-27 11:45:56.669oai:tede2:tede2/4537Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:31:53.908724Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Uma priori beta para distribuição binomial negativa |
title |
Uma priori beta para distribuição binomial negativa |
spellingShingle |
Uma priori beta para distribuição binomial negativa OLIVEIRA, Cícero Carlos Felix de Distribuição binomial negativa Inferência bayesiana Distribuição beta Priore não informativa CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Uma priori beta para distribuição binomial negativa |
title_full |
Uma priori beta para distribuição binomial negativa |
title_fullStr |
Uma priori beta para distribuição binomial negativa |
title_full_unstemmed |
Uma priori beta para distribuição binomial negativa |
title_sort |
Uma priori beta para distribuição binomial negativa |
author |
OLIVEIRA, Cícero Carlos Felix de |
author_facet |
OLIVEIRA, Cícero Carlos Felix de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SANTOS, Eufrázio de Souza |
dc.contributor.referee1.fl_str_mv |
CUNHA FILHO, Moacyr |
dc.contributor.referee2.fl_str_mv |
STOSIC, Borko |
dc.contributor.referee3.fl_str_mv |
FIGUEIRÔA, Manuel Luiz |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0479940625032580 |
dc.contributor.author.fl_str_mv |
OLIVEIRA, Cícero Carlos Felix de |
contributor_str_mv |
SANTOS, Eufrázio de Souza CUNHA FILHO, Moacyr STOSIC, Borko FIGUEIRÔA, Manuel Luiz |
dc.subject.por.fl_str_mv |
Distribuição binomial negativa Inferência bayesiana Distribuição beta Priore não informativa |
topic |
Distribuição binomial negativa Inferência bayesiana Distribuição beta Priore não informativa CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
This dissertation is being dealt with a discrete distribution based on Bernoulli trials, which is the Negative Binomial distribution. The main objective is to propose a new non-informative prior distribution for the Negative Binomial model, which is being termed as a possible prior distribution Beta(0; 0), which is an improper distribution. This distribution is also known for the Binomial model as Haldane prior, but for the Negative Binomial model there are no studies to date. The study of the behavior of this prior was based on Bayesian and classical contexts. The idea of using a non-informative prior is the desire to make statistical inference based on the minimum of information prior subjective as possible. Well, makes it possible to compare the results of classical inference that uses only sample information, for example, the maximum likelihood estimator. When is compared the Beta(0; 0) distribution with the Bayes-Laplace prior and Jeffreys prior, based on the Bayesian estimators (posterior mean and posterior mode) and the maximum likelihood estimator, note that the possible Beta(0; 0) prior is less informative than the others prior. It is also verified that is prior possible is a limited distribution in parameter space, thus, an important feature for non-informative prior. The main argument shows that the possible Beta(0; 0) prior is adequate, when it is applied in a predictive posterior distribution for Negative Binomial model, leading the a Beta-Negative Binomial distribution (which corresponds the a hypergeometric multiplied by a probability). All observations citas are strengthened by several studies, such as: basic concepts related to Bayesian Inference and concepts of the negative binomial distribution and Beta-Negative Binomial (a mixture of Beta with the negative binomial) distribution. |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-07-08 |
dc.date.accessioned.fl_str_mv |
2016-05-25T16:16:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
OLIVEIRA, Cícero Carlos Felix de. Uma priori beta para distribuição binomial negativa. 2011. 68 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4537 |
identifier_str_mv |
OLIVEIRA, Cícero Carlos Felix de. Uma priori beta para distribuição binomial negativa. 2011. 68 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4537 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
768382242446187918 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-6774555140396120501 |
dc.relation.cnpq.fl_str_mv |
-5836407828185143517 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biometria e Estatística Aplicada |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Estatística e Informática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4537/1/license.txt http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4537/2/Cicero+Carlos+Felix+de+Oliveira.pdf |
bitstream.checksum.fl_str_mv |
7b5ba3d2445355f386edab96125d42b7 4f4332b0b319f6bf33cdc1d615c36324 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102216035401728 |