Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8127 |
Resumo: | The aim of this study was to evaluate the application of some of the main techniques of multivariate analysis in a set of variables of carcass traits of Morada Nova sheep breed, in order to reduce the dimensionality of multivariate space, to study the association between group of variables and to select the most important ones and with greater discriminatory power. It was used a data of 48 Morada Nova sheep breed, with a mean age of 8 months, comprising 25 traits regarding carcass measurements (thorax depth - TD, thorax perimeter - TP, leg perimeter - LP, hind perimeter - HP, carcass external length - CEL, carcass internal length - CIL, leg length - LL, hind width - HW, thorax width - TW, index of carcass compactness - ICC, loin eye area - LEA, slaughter body weight - SBW, hot carcass weight - HCW, hot carcass yield - HCY, cold carcass weight - CCW, cold carcass yield - CCY, cooling loss - CL, empty body weight - EBW, true yield - TY, neck yield - NY, shoulder yield - SY, sawcut yield - SCY, loin yield - LY, ribs yield - RY, leg yield - LEY). In the chapter II, 19 variables were submitted to analysis of principal components (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, ICC, LEA, SBW, HCW, HCY, CCW, CCY, CL, EBW, TY) in order to reduce the dimensionality of the data set. The principal components were efficient in reducing the total variation in 19 original variables correlated to five linear combinations (𝐶𝑃𝑘), which explained 80% of the total variation contained in the original variables. The first two principal components together explain 56.12% of the total variance of the variables evaluated. The traits with the highest weighting coefficients, in absolute value, in the first component were CCW (0.37), followed by HCW (0.36), ECW and ICC (0.34), characterizing CP1 as an index for the determination of carcass conformation of the animal. In the second component, the variables LL, HW and HP (0.39) were those with the highest weighting coefficients and indicating that CP2 can be considered an index of the biometric measurements. The variables selected according to the criterion of choice of the one with the highest weighting coefficient in each of the five components were CCW (0.37), HP, LL and HW (0.39), CCY (-0.48), TW (0.50) and LP (0.81), and therefore the use of these traits in future experiments is recommended. In the chapter III, 19 variables (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, ICC, LEA, SBW, HCW, HCY, CCW, CCY, CL, EBW, TY) were submitted to the discriminant analysis to identify the variables with the great discriminatory power between the treatments T1 - forage cactus associated with hay Tifton 85, corn in grains, soybean meal, urea and mineral mix; T2 - forage cactus associated to hay Maniçoba, corn grain, soybean meal, urea and mineral mix; T3 - hay of Tifton 85 grass and 20% concentrate (composed of milled corn, soybean meal and vegetable oil); T4 - hay of Tifton 85 grass and 40% concentrate; T5 - hay of Tifton 85 grass and 60% concentrate; T6 - hay of Tifton 85 grass and 80% concentrate; and also to quantify the association between the variables. Eight variables were selected by the stepwise method: HP, HW, TW, CEL, LL, SBW, EBW and CL. The first three canonical variables were significant, explaining 92.25% of the total variation. The first canonical variable has a canonical correlation coefficient of 0.94, which indicates a high association between the biometric measures and animal performance traits. SBW and HW were the variables selected because they presented the greatest discriminatory power of the treatments, based on standardized canonical coefficients. In the fourth and last chapter, 15 variables were submitted to canonical correlation analysis (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, NY, SY, SCY, LY, RY, LEY) and were shared in two sets (biometric measurements (X) and cut yields (Y)), in order to estimate the canonical correlations between they (𝑊𝑘𝑉𝑘) and evaluate the degree of association between the two groups. Only the first canonical pair was significant with coefficient of 0.86, indicating a high association between the biometric measurements (X) and the meat cut yield traits (Y). The proportion of the shared variance between 𝑊1𝑉1, given by the canonical correlation coefficient squared (r²), was 0.74. That is, 74% of the variation of 𝑊1 is explained by the variation of 𝑉1, which indicates the existence of a high association between the sets of variables X and Y. Considering the standardized canonical coefficients, HW and LL were the variables that have the biggest contribution in the formation of 𝑉1 and SCY and SY were the variables that have the biggest contribution in the formation of 𝑊1. Based on correlation between canonical variable and the original ones for the interpretation of canonical variables, the HW and LL most contributed to perform 𝑉1, whereas SY and SCY were the most important variables to perform 𝑊1. |
id |
URPE_f2bceea44e8855b3a7fc4576b8065337 |
---|---|
oai_identifier_str |
oai:tede2:tede2/8127 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
RIBEIRO, Maria NormaCARVALHO, Francisco Fernando Ramos deBRASIL, Lúcia Helena de AlbuquerqueMONNERAT, João Paulo Ismério dos SantosROCHA, Laura Leandro daCRUZ, George Rodrigo Beltrão dahttp://lattes.cnpq.br/3206584656235151GUEDES, Déborah Galvão Peixôto2019-07-04T13:12:52Z2017-07-27GUEDES, Déborah Galvão Peixôto. Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova. 2017. 99 f. Tese (Programa de Pós-Graduação em Zootecnia) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8127The aim of this study was to evaluate the application of some of the main techniques of multivariate analysis in a set of variables of carcass traits of Morada Nova sheep breed, in order to reduce the dimensionality of multivariate space, to study the association between group of variables and to select the most important ones and with greater discriminatory power. It was used a data of 48 Morada Nova sheep breed, with a mean age of 8 months, comprising 25 traits regarding carcass measurements (thorax depth - TD, thorax perimeter - TP, leg perimeter - LP, hind perimeter - HP, carcass external length - CEL, carcass internal length - CIL, leg length - LL, hind width - HW, thorax width - TW, index of carcass compactness - ICC, loin eye area - LEA, slaughter body weight - SBW, hot carcass weight - HCW, hot carcass yield - HCY, cold carcass weight - CCW, cold carcass yield - CCY, cooling loss - CL, empty body weight - EBW, true yield - TY, neck yield - NY, shoulder yield - SY, sawcut yield - SCY, loin yield - LY, ribs yield - RY, leg yield - LEY). In the chapter II, 19 variables were submitted to analysis of principal components (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, ICC, LEA, SBW, HCW, HCY, CCW, CCY, CL, EBW, TY) in order to reduce the dimensionality of the data set. The principal components were efficient in reducing the total variation in 19 original variables correlated to five linear combinations (𝐶𝑃𝑘), which explained 80% of the total variation contained in the original variables. The first two principal components together explain 56.12% of the total variance of the variables evaluated. The traits with the highest weighting coefficients, in absolute value, in the first component were CCW (0.37), followed by HCW (0.36), ECW and ICC (0.34), characterizing CP1 as an index for the determination of carcass conformation of the animal. In the second component, the variables LL, HW and HP (0.39) were those with the highest weighting coefficients and indicating that CP2 can be considered an index of the biometric measurements. The variables selected according to the criterion of choice of the one with the highest weighting coefficient in each of the five components were CCW (0.37), HP, LL and HW (0.39), CCY (-0.48), TW (0.50) and LP (0.81), and therefore the use of these traits in future experiments is recommended. In the chapter III, 19 variables (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, ICC, LEA, SBW, HCW, HCY, CCW, CCY, CL, EBW, TY) were submitted to the discriminant analysis to identify the variables with the great discriminatory power between the treatments T1 - forage cactus associated with hay Tifton 85, corn in grains, soybean meal, urea and mineral mix; T2 - forage cactus associated to hay Maniçoba, corn grain, soybean meal, urea and mineral mix; T3 - hay of Tifton 85 grass and 20% concentrate (composed of milled corn, soybean meal and vegetable oil); T4 - hay of Tifton 85 grass and 40% concentrate; T5 - hay of Tifton 85 grass and 60% concentrate; T6 - hay of Tifton 85 grass and 80% concentrate; and also to quantify the association between the variables. Eight variables were selected by the stepwise method: HP, HW, TW, CEL, LL, SBW, EBW and CL. The first three canonical variables were significant, explaining 92.25% of the total variation. The first canonical variable has a canonical correlation coefficient of 0.94, which indicates a high association between the biometric measures and animal performance traits. SBW and HW were the variables selected because they presented the greatest discriminatory power of the treatments, based on standardized canonical coefficients. In the fourth and last chapter, 15 variables were submitted to canonical correlation analysis (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, NY, SY, SCY, LY, RY, LEY) and were shared in two sets (biometric measurements (X) and cut yields (Y)), in order to estimate the canonical correlations between they (𝑊𝑘𝑉𝑘) and evaluate the degree of association between the two groups. Only the first canonical pair was significant with coefficient of 0.86, indicating a high association between the biometric measurements (X) and the meat cut yield traits (Y). The proportion of the shared variance between 𝑊1𝑉1, given by the canonical correlation coefficient squared (r²), was 0.74. That is, 74% of the variation of 𝑊1 is explained by the variation of 𝑉1, which indicates the existence of a high association between the sets of variables X and Y. Considering the standardized canonical coefficients, HW and LL were the variables that have the biggest contribution in the formation of 𝑉1 and SCY and SY were the variables that have the biggest contribution in the formation of 𝑊1. Based on correlation between canonical variable and the original ones for the interpretation of canonical variables, the HW and LL most contributed to perform 𝑉1, whereas SY and SCY were the most important variables to perform 𝑊1.Objetivou-se avaliar a aplicação de algumas das principais técnicas de análise multivariada em um conjunto de variáveis referentes a características de carcaça de ovinos da raça Morada Nova, com o intuito de reduzir a dimensionalidade do espaço multivariado, estudar a associação entre grupo de variáveis e selecionar aquelas mais importantes e com maior poder discriminatório. Foram utilizadas informações de 48 ovinos da raça Morada Nova, com idade média de oito meses, compreendendo 25 características referentes a medidas de carcaça (profundidade torácica - PFT, perímetro torácico - PT, perímetro de perna - PP, perímetro de garupa - PG, comprimento externo da carcaça - CEC, comprimento interno da carcaça - CIC, comprimento da perna - CP, largura de garupa - LG, largura torácica - LT, índice de compacidade de carcaça - ICC, área de olho de lombo - AOL, peso corporal ao abate - PCA, peso de carcaça quente - PCQ, rendimento de carcaça quente - RCQ, peso de carcaça fria - PCF, rendimento de carcaça fria - RCF, perda por resfriamento - PR, peso corporal vazio - PCV, rendimento verdadeiro - RV, rendimento de pescoço - RPes, rendimento de paleta - RPal, rendimento de serrote - RSer, rendimento de lombo - RLom, rendimento de costilhar - RCostil e rendimento de perna - RPer). No capítulo II, 19 variáveis foram submetidas a análise de componentes principais (PFT, PT, PP, PG, CEC, CIC, CP, LG, LT, ICC, AOL, PCA, PCQ, RCQ, PCF, RCF, PR, PCV, RV), a fim de reduzir a dimensionalidade do conjunto de dados. Os componentes principais gerados foram eficientes em reduzir a variação total acumulada em 19 variáveis originais correlacionadas para cinco combinações lineares (𝐶𝑃𝑘), os quais explicaram 80% da variação total contida nas variáveis originais. Os dois primeiros componentes principais juntos explicam 56,12% da variação total das variáveis avaliadas. As características com maiores coeficientes de ponderação, em valor absoluto, no primeiro componente foram PCF (0,37), seguida de PCQ (0,36), PCV e ICC (0,34), caracterizando CP1 como um índice para a determinação da conformação da carcaça do animal. No segundo componente, as variáveis CP, LG e PG (0,39) foram aquelas com os maiores coeficientes de ponderação e que indicam que CP2 pode ser considerado um índice das medidas biométricas. As variáveis selecionadas seguindo o critério de escolha daquela que possui o mais alto coeficiente de ponderação em cada um dos cinco componentes foram PCF (0,37), PG, CP e LG (0,39), RCF (-0,48), LT (0,50) e PP (0,81) e, portanto, recomenda-se o uso destas características em experimentos futuros. No capítulo III, 19 variáveis foram submetidas à análise discriminante canônica (PFT, PT, PP, PG, CEC, CIC, CP, LG, LT, ICC, AOL, PCA, PCQ, RCQ, PCF, RCF, PR, PCV, RV), a fim de identificar aquelas com o maior poder de discriminação entre os tratamentos T1 - Fração volumosa composta de palma forrageira associada ao feno de capim Tifton 85 e fração concentrada composta por milho em grão, farelo de soja, ureia e mistura mineral; T2 - Fração volumosa composta de palma forrageira associada ao feno de Maniçoba e fração concentrada composta por milho em grão, farelo de soja, ureia e mistura mineral; T3 - Feno moído de capim Tifton 85 e 20% de concentrado (composto por milho moído, farelo de soja e óleo vegetal); T4 - Feno moído de capim Tifton 85 e 40% de concentrado; T5 - Feno moído de capim Tifton 85 e 60% de concentrado; T6 - Feno moído de capim Tifton 85 e 80% de concentrado; e também quantificar a associação entre as variáveis. Oito variáveis foram selecionadas pelo método stepwise: PG, LG, LT, CEC, CP, PCA, PCV e PR. As três primeiras variáveis canônicas foram significativas, explicando 92,25 % da variação total. A primeira variável canônica apresentou o coeficiente de correlação canônica de 0,94, o que indica uma alta associação entre as características de medidas biométricas e de desempenho animal. PCA e LG foram as variáveis selecionadas por apresentar o mais alto poder discriminatório dos tratamentos, com base nos coeficientes canônicos padronizados. No quarto e último capítulo, 15 variáveis foram submetidas à análise de correlação canônica (PFT, PT, PP, PG, CEC, CIC, CP, LG, LT, RPes, RPal, RSer, RLom, RCostil, RPer), e para isso foram divididas em dois conjuntos (medidas biométricas (𝑋) e rendimento de cortes (𝑌)), a fim de estimar as correlações canônicas entre os dois grupos de (𝑊𝑘𝑉𝑘), e avaliar o grau de associação entre eles. Apenas o primeiro par canônico foi significativo, com coeficiente de correlação canônica de 0,86, o que indica alta associação entre as características de medidas biométricas e de rendimento dos cortes cárneos. A proporção da variância compartilhada entre 𝑊1𝑉1, dada pelo coeficiente de correlação canônica ao quadrado (r2), foi de 0,74, isto é, 74% da variação de 𝑊1 é explicada pela variação de 𝑉1, o que indica a existência de uma alta associação entre os conjuntos de variáveis X e Y. Considerando os coeficientes canônicos padronizados, LG e CP foram as variáveis que mais contribuíram na formação de 𝑉1 e RSer e RPal foram as variáveis que mais contribuíram na formação de 𝑊1. Utilizando o cálculo das correlações das variáveis canônicas com as variáveis originais para a interpretação das variáveis canônica, observou-se que LG e CP também foram as variáveis que mais contribuíram para a formação de 𝑉1, enquanto que RPal e RSer foram as variáveis mais importantes na formação de 𝑊1.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-07-04T13:12:52Z No. of bitstreams: 1 Deborah Galvao Peixoto Guedes.pdf: 1194332 bytes, checksum: 6a7928206ff1a991c499ca87ce0e8783 (MD5)Made available in DSpace on 2019-07-04T13:12:52Z (GMT). No. of bitstreams: 1 Deborah Galvao Peixoto Guedes.pdf: 1194332 bytes, checksum: 6a7928206ff1a991c499ca87ce0e8783 (MD5) Previous issue date: 2017-07-27Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em ZootecniaUFRPEBrasilDepartamento de ZootecniaAnálise multivariadaCarcaça de ovinoOvinoCIENCIAS AGRARIAS::ZOOTECNIATécnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada novainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-3881065194686295060600600600600-768565415068297243213468589812708456022075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALDeborah Galvao Peixoto Guedes.pdfDeborah Galvao Peixoto Guedes.pdfapplication/pdf1194332http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/8127/2/Deborah+Galvao+Peixoto+Guedes.pdf6a7928206ff1a991c499ca87ce0e8783MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/8127/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/81272023-05-08 11:04:29.49oai:tede2:tede2/8127Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:34.108659Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova |
title |
Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova |
spellingShingle |
Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova GUEDES, Déborah Galvão Peixôto Análise multivariada Carcaça de ovino Ovino CIENCIAS AGRARIAS::ZOOTECNIA |
title_short |
Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova |
title_full |
Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova |
title_fullStr |
Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova |
title_full_unstemmed |
Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova |
title_sort |
Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova |
author |
GUEDES, Déborah Galvão Peixôto |
author_facet |
GUEDES, Déborah Galvão Peixôto |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
RIBEIRO, Maria Norma |
dc.contributor.advisor-co1.fl_str_mv |
CARVALHO, Francisco Fernando Ramos de |
dc.contributor.referee1.fl_str_mv |
BRASIL, Lúcia Helena de Albuquerque |
dc.contributor.referee2.fl_str_mv |
MONNERAT, João Paulo Ismério dos Santos |
dc.contributor.referee3.fl_str_mv |
ROCHA, Laura Leandro da |
dc.contributor.referee4.fl_str_mv |
CRUZ, George Rodrigo Beltrão da |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3206584656235151 |
dc.contributor.author.fl_str_mv |
GUEDES, Déborah Galvão Peixôto |
contributor_str_mv |
RIBEIRO, Maria Norma CARVALHO, Francisco Fernando Ramos de BRASIL, Lúcia Helena de Albuquerque MONNERAT, João Paulo Ismério dos Santos ROCHA, Laura Leandro da CRUZ, George Rodrigo Beltrão da |
dc.subject.por.fl_str_mv |
Análise multivariada Carcaça de ovino Ovino |
topic |
Análise multivariada Carcaça de ovino Ovino CIENCIAS AGRARIAS::ZOOTECNIA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ZOOTECNIA |
description |
The aim of this study was to evaluate the application of some of the main techniques of multivariate analysis in a set of variables of carcass traits of Morada Nova sheep breed, in order to reduce the dimensionality of multivariate space, to study the association between group of variables and to select the most important ones and with greater discriminatory power. It was used a data of 48 Morada Nova sheep breed, with a mean age of 8 months, comprising 25 traits regarding carcass measurements (thorax depth - TD, thorax perimeter - TP, leg perimeter - LP, hind perimeter - HP, carcass external length - CEL, carcass internal length - CIL, leg length - LL, hind width - HW, thorax width - TW, index of carcass compactness - ICC, loin eye area - LEA, slaughter body weight - SBW, hot carcass weight - HCW, hot carcass yield - HCY, cold carcass weight - CCW, cold carcass yield - CCY, cooling loss - CL, empty body weight - EBW, true yield - TY, neck yield - NY, shoulder yield - SY, sawcut yield - SCY, loin yield - LY, ribs yield - RY, leg yield - LEY). In the chapter II, 19 variables were submitted to analysis of principal components (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, ICC, LEA, SBW, HCW, HCY, CCW, CCY, CL, EBW, TY) in order to reduce the dimensionality of the data set. The principal components were efficient in reducing the total variation in 19 original variables correlated to five linear combinations (𝐶𝑃𝑘), which explained 80% of the total variation contained in the original variables. The first two principal components together explain 56.12% of the total variance of the variables evaluated. The traits with the highest weighting coefficients, in absolute value, in the first component were CCW (0.37), followed by HCW (0.36), ECW and ICC (0.34), characterizing CP1 as an index for the determination of carcass conformation of the animal. In the second component, the variables LL, HW and HP (0.39) were those with the highest weighting coefficients and indicating that CP2 can be considered an index of the biometric measurements. The variables selected according to the criterion of choice of the one with the highest weighting coefficient in each of the five components were CCW (0.37), HP, LL and HW (0.39), CCY (-0.48), TW (0.50) and LP (0.81), and therefore the use of these traits in future experiments is recommended. In the chapter III, 19 variables (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, ICC, LEA, SBW, HCW, HCY, CCW, CCY, CL, EBW, TY) were submitted to the discriminant analysis to identify the variables with the great discriminatory power between the treatments T1 - forage cactus associated with hay Tifton 85, corn in grains, soybean meal, urea and mineral mix; T2 - forage cactus associated to hay Maniçoba, corn grain, soybean meal, urea and mineral mix; T3 - hay of Tifton 85 grass and 20% concentrate (composed of milled corn, soybean meal and vegetable oil); T4 - hay of Tifton 85 grass and 40% concentrate; T5 - hay of Tifton 85 grass and 60% concentrate; T6 - hay of Tifton 85 grass and 80% concentrate; and also to quantify the association between the variables. Eight variables were selected by the stepwise method: HP, HW, TW, CEL, LL, SBW, EBW and CL. The first three canonical variables were significant, explaining 92.25% of the total variation. The first canonical variable has a canonical correlation coefficient of 0.94, which indicates a high association between the biometric measures and animal performance traits. SBW and HW were the variables selected because they presented the greatest discriminatory power of the treatments, based on standardized canonical coefficients. In the fourth and last chapter, 15 variables were submitted to canonical correlation analysis (TD, TP, LP, HP, CEL, CIL, LL, HW, TW, NY, SY, SCY, LY, RY, LEY) and were shared in two sets (biometric measurements (X) and cut yields (Y)), in order to estimate the canonical correlations between they (𝑊𝑘𝑉𝑘) and evaluate the degree of association between the two groups. Only the first canonical pair was significant with coefficient of 0.86, indicating a high association between the biometric measurements (X) and the meat cut yield traits (Y). The proportion of the shared variance between 𝑊1𝑉1, given by the canonical correlation coefficient squared (r²), was 0.74. That is, 74% of the variation of 𝑊1 is explained by the variation of 𝑉1, which indicates the existence of a high association between the sets of variables X and Y. Considering the standardized canonical coefficients, HW and LL were the variables that have the biggest contribution in the formation of 𝑉1 and SCY and SY were the variables that have the biggest contribution in the formation of 𝑊1. Based on correlation between canonical variable and the original ones for the interpretation of canonical variables, the HW and LL most contributed to perform 𝑉1, whereas SY and SCY were the most important variables to perform 𝑊1. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-07-27 |
dc.date.accessioned.fl_str_mv |
2019-07-04T13:12:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GUEDES, Déborah Galvão Peixôto. Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova. 2017. 99 f. Tese (Programa de Pós-Graduação em Zootecnia) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8127 |
identifier_str_mv |
GUEDES, Déborah Galvão Peixôto. Técnicas estatísticas multivariadas aplicadas a caracterização de carcaça de ovinos da raça morada nova. 2017. 99 f. Tese (Programa de Pós-Graduação em Zootecnia) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8127 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-3881065194686295060 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-7685654150682972432 |
dc.relation.cnpq.fl_str_mv |
1346858981270845602 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Zootecnia |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Zootecnia |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/8127/2/Deborah+Galvao+Peixoto+Guedes.pdf http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/8127/1/license.txt |
bitstream.checksum.fl_str_mv |
6a7928206ff1a991c499ca87ce0e8783 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102259592200192 |