Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) |
Texto Completo: | http://www.repositorio.jesuita.org.br/handle/UNISINOS/12638 |
Resumo: | Na área de medicina regenerativa têm-se aplicado conhecimentos multidisciplinares para construir tecidos e órgãos funcionais, visando prolongar a qualidade e o tempo de vida. Um dos métodos utilizados para o desenvolvimento destes tecidos é a incorporação de células em scaffolds. O material dos scaffolds deve ser biodegradável e bioabsorvível, além de apresentar condutividade elétrica para aprimorar a comunicação entre células. Assim, dentre os principais materiais utilizados para o desenvolvimento de scaffolds, citam-se polímeros biodegradáveis como poli (ácido lático) (PLA), poli (álcool vinílico) (PVA), alginato e polímeros condutores como o PEDOT:PSS. Desta forma, realizou-se um estudo visando o desenvolvimento de scaffolds com características condutivas tendo como base PLA ou PVA e como elemento condutivo o PEDOT. Para isso, realizou-se primeiramente a síntese química do PEDOT:PSS avaliando-se o método de obtenção e características obtidas, além da possibilidade de substituição do PSS pelo alginato. Posteriormente, o PEDOT:PSS foi adicionado a soluções de PLA e de PVA com glicerol. Produziu-se, então, scaffolds através do método de moldagem de cinco composições diferentes de PLA, PVA e PEDOT:PSS. Os scaffolds foram caracterizados por espectrometria no infravermelho com transformada de Fourier, calorimetria diferencial de varredura, análise termogravimétrica, ensaio de compressão, medição da resistividade elétrica pelo método de quatro pontas, capacidade de absorção de água, ensaio de degradação e viabilidade celular. Não foi possível substituir o PSS pelo alginato utilizando a mesma metodologia. Produziu-se scaffolds termicamente estáveis, com porosidade na faixa de 75 – 96 %, com rigidez apropriada para diferentes tipos de tecidos humanos e com capacidade de absorção de água que abrange de 567% para scaffolds a base de PVA e PEDOT:PSS à 26,5% para PLA com 10% de PEDOT:PSS. Os scaffolds de PVA com PEDOT:PSS apresentaram condutividade de 8,9 x 10-4 ± 6,6 x 10-4 S/cm, e os de PLA 2,7 x 10-6 ± 9,7 x 10-6 S/cm para com 10% de PEDOT:PSS, suficientes para incentivar a proliferação e diferenciação celular. Os scaffolds de PLA com 10% de PEDOT:PSS não apresentam citotoxicidade quando comparado ao cultivo 2D convencional em placas, enquanto os demais scaffolds testados apresentaram menor viabilidade celular. Assim, o scaffold de PLA 10% é o mais indicado para aplicações em engenharia de tecido. |
id |
USIN_67fd12f00fc17d8cabc71a6504c87692 |
---|---|
oai_identifier_str |
oai:www.repositorio.jesuita.org.br:UNISINOS/12638 |
network_acronym_str |
USIN |
network_name_str |
Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) |
repository_id_str |
|
spelling |
2023-08-04T14:17:07Z2023-08-04T14:17:07Z2023-04-17Submitted by Jeferson Carlos da Veiga Rodrigues (jveigar@unisinos.br) on 2023-08-04T14:17:07Z No. of bitstreams: 1 Tayná Copes Rodrigues_.pdf: 3563970 bytes, checksum: 7149babb27778e4b030e55ed97804ba2 (MD5)Made available in DSpace on 2023-08-04T14:17:07Z (GMT). No. of bitstreams: 1 Tayná Copes Rodrigues_.pdf: 3563970 bytes, checksum: 7149babb27778e4b030e55ed97804ba2 (MD5) Previous issue date: 2023-04-17Na área de medicina regenerativa têm-se aplicado conhecimentos multidisciplinares para construir tecidos e órgãos funcionais, visando prolongar a qualidade e o tempo de vida. Um dos métodos utilizados para o desenvolvimento destes tecidos é a incorporação de células em scaffolds. O material dos scaffolds deve ser biodegradável e bioabsorvível, além de apresentar condutividade elétrica para aprimorar a comunicação entre células. Assim, dentre os principais materiais utilizados para o desenvolvimento de scaffolds, citam-se polímeros biodegradáveis como poli (ácido lático) (PLA), poli (álcool vinílico) (PVA), alginato e polímeros condutores como o PEDOT:PSS. Desta forma, realizou-se um estudo visando o desenvolvimento de scaffolds com características condutivas tendo como base PLA ou PVA e como elemento condutivo o PEDOT. Para isso, realizou-se primeiramente a síntese química do PEDOT:PSS avaliando-se o método de obtenção e características obtidas, além da possibilidade de substituição do PSS pelo alginato. Posteriormente, o PEDOT:PSS foi adicionado a soluções de PLA e de PVA com glicerol. Produziu-se, então, scaffolds através do método de moldagem de cinco composições diferentes de PLA, PVA e PEDOT:PSS. Os scaffolds foram caracterizados por espectrometria no infravermelho com transformada de Fourier, calorimetria diferencial de varredura, análise termogravimétrica, ensaio de compressão, medição da resistividade elétrica pelo método de quatro pontas, capacidade de absorção de água, ensaio de degradação e viabilidade celular. Não foi possível substituir o PSS pelo alginato utilizando a mesma metodologia. Produziu-se scaffolds termicamente estáveis, com porosidade na faixa de 75 – 96 %, com rigidez apropriada para diferentes tipos de tecidos humanos e com capacidade de absorção de água que abrange de 567% para scaffolds a base de PVA e PEDOT:PSS à 26,5% para PLA com 10% de PEDOT:PSS. Os scaffolds de PVA com PEDOT:PSS apresentaram condutividade de 8,9 x 10-4 ± 6,6 x 10-4 S/cm, e os de PLA 2,7 x 10-6 ± 9,7 x 10-6 S/cm para com 10% de PEDOT:PSS, suficientes para incentivar a proliferação e diferenciação celular. Os scaffolds de PLA com 10% de PEDOT:PSS não apresentam citotoxicidade quando comparado ao cultivo 2D convencional em placas, enquanto os demais scaffolds testados apresentaram menor viabilidade celular. Assim, o scaffold de PLA 10% é o mais indicado para aplicações em engenharia de tecido.In the area of regenerative medicine, multidisciplinary knowledge has been applied to build functional tissues and organs, aiming to prolong the quality and duration of life. One of the methods used for the development of these tissues is the incorporation of cells in scaffolds. The scaffold material must be biodegradable and bioabsorbable, in addition to having electrical conductivity to improve cell-to-cell communication. Thus, among the main materials used for the development of scaffolds, biodegradable polymers such as poly (lactic acid) PLA, poly (vinyl alcohol) PVA, alginate and conductive polymers such as PEDOT:PSS. The aim of this study was the development of scaffolds with conductive characteristics based on PLA or PVA and PEDOT as conductive element. For this, the chemical synthesis of the PEDOT:PSS was first performed, evaluating the method of obtaining and characteristics obtained, in addition to the possibility of substituting PSS for alginate. Subsequently, PEDOT:PSS was added to PLA and PVA with glycerol solutions. Then, scaffolds were produced through the method of molding with five different compositions of PLA, PVA and PEDOT:PSS. The scaffolds were characterized by Fourier transform infrared spectrometry, differential scanning calorimetry, thermogravimetric analysis, compression test, resistivity measurement by the four-point method, water absorption capacity, degradation assay and, cell viability. It was not possible to substitute PSS for alginate using the same methodology. Thermally stable scaffolds were produced, with porosity in the range of 75 – 96%, with appropriate rigidity for different types of human tissues, and with water absorption capacity ranging from 567% for scaffolds based on PVA and PEDOT:PSS at 26.5% for PLA with 10% PEDOT:PSS. The PVA scaffolds with PEDOT:PSS showed a conductivity of 8.9 x 10-4 ± 6.6 x 10-4 S/cm, and the PLA scaffolds 2.7 x 10-6 ± 9.7 x 10-6 S/cm for 10% PEDOT:PSS, sufficient to encourage cell proliferation and differentiation. PLA scaffolds with 10% PEDOT:PSS did not show cytotoxicity when compared to conventional 2D culture in plates, while the others scaffolds tested showed lower cell viability. Thus, the 10% PLA scaffold is most suitable for tissue engineering applications.NenhumaRodrigues, Tayná Copeshttp://lattes.cnpq.br/0422169104759745http://lattes.cnpq.br/9378565098589680Rocha, Tatiana Louise Avila de CamposUniversidade do Vale do Rio dos SinosPrograma de Pós-Graduação em Engenharia ElétricaUnisinosBrasilEscola PolitécnicaDesenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidosACCNPQ::Engenharias::Engenharia ElétricaScaffoldsPLAPVAPEDOTEngenharia de tecidosTissue engineeringinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.repositorio.jesuita.org.br/handle/UNISINOS/12638info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)instname:Universidade do Vale do Rio dos Sinos (UNISINOS)instacron:UNISINOSLICENSElicense.txtlicense.txttext/plain; charset=utf-82175http://repositorio.jesuita.org.br/bitstream/UNISINOS/12638/2/license.txt320e21f23402402ac4988605e1edd177MD52ORIGINALTayná Copes Rodrigues_.pdfTayná Copes Rodrigues_.pdfapplication/pdf3563970http://repositorio.jesuita.org.br/bitstream/UNISINOS/12638/1/Tayn%C3%A1+Copes+Rodrigues_.pdf7149babb27778e4b030e55ed97804ba2MD51UNISINOS/126382023-08-04 11:21:19.868oai:www.repositorio.jesuita.org.br:UNISINOS/12638Ck5PVEE6IENPTE9RVUUgQVFVSSBBIFNVQSBQUsOTUFJJQSBMSUNFTsOHQQoKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxpY2Vuw6dhIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIApVbml2ZXJzaWRhZGUgZG8gVmFsZSBkbyBSaW8gZG9zIFNpbm9zIChVTklTSU5PUykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdSAKZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IApjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogCmRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgU0lHTEEgREUgClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyAKY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e Dissertaçõeshttp://www.repositorio.jesuita.org.br/oai/requestopendoar:2023-08-04T14:21:19Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)false |
dc.title.pt_BR.fl_str_mv |
Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos |
title |
Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos |
spellingShingle |
Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos Rodrigues, Tayná Copes ACCNPQ::Engenharias::Engenharia Elétrica Scaffolds PLA PVA PEDOT Engenharia de tecidos Tissue engineering |
title_short |
Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos |
title_full |
Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos |
title_fullStr |
Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos |
title_full_unstemmed |
Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos |
title_sort |
Desenvolvimento de scaffolds condutivos de PLA e PVA com PEDOT para engenharia de tecidos |
author |
Rodrigues, Tayná Copes |
author_facet |
Rodrigues, Tayná Copes |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0422169104759745 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9378565098589680 |
dc.contributor.author.fl_str_mv |
Rodrigues, Tayná Copes |
dc.contributor.advisor1.fl_str_mv |
Rocha, Tatiana Louise Avila de Campos |
contributor_str_mv |
Rocha, Tatiana Louise Avila de Campos |
dc.subject.cnpq.fl_str_mv |
ACCNPQ::Engenharias::Engenharia Elétrica |
topic |
ACCNPQ::Engenharias::Engenharia Elétrica Scaffolds PLA PVA PEDOT Engenharia de tecidos Tissue engineering |
dc.subject.por.fl_str_mv |
Scaffolds PLA PVA PEDOT Engenharia de tecidos Tissue engineering |
description |
Na área de medicina regenerativa têm-se aplicado conhecimentos multidisciplinares para construir tecidos e órgãos funcionais, visando prolongar a qualidade e o tempo de vida. Um dos métodos utilizados para o desenvolvimento destes tecidos é a incorporação de células em scaffolds. O material dos scaffolds deve ser biodegradável e bioabsorvível, além de apresentar condutividade elétrica para aprimorar a comunicação entre células. Assim, dentre os principais materiais utilizados para o desenvolvimento de scaffolds, citam-se polímeros biodegradáveis como poli (ácido lático) (PLA), poli (álcool vinílico) (PVA), alginato e polímeros condutores como o PEDOT:PSS. Desta forma, realizou-se um estudo visando o desenvolvimento de scaffolds com características condutivas tendo como base PLA ou PVA e como elemento condutivo o PEDOT. Para isso, realizou-se primeiramente a síntese química do PEDOT:PSS avaliando-se o método de obtenção e características obtidas, além da possibilidade de substituição do PSS pelo alginato. Posteriormente, o PEDOT:PSS foi adicionado a soluções de PLA e de PVA com glicerol. Produziu-se, então, scaffolds através do método de moldagem de cinco composições diferentes de PLA, PVA e PEDOT:PSS. Os scaffolds foram caracterizados por espectrometria no infravermelho com transformada de Fourier, calorimetria diferencial de varredura, análise termogravimétrica, ensaio de compressão, medição da resistividade elétrica pelo método de quatro pontas, capacidade de absorção de água, ensaio de degradação e viabilidade celular. Não foi possível substituir o PSS pelo alginato utilizando a mesma metodologia. Produziu-se scaffolds termicamente estáveis, com porosidade na faixa de 75 – 96 %, com rigidez apropriada para diferentes tipos de tecidos humanos e com capacidade de absorção de água que abrange de 567% para scaffolds a base de PVA e PEDOT:PSS à 26,5% para PLA com 10% de PEDOT:PSS. Os scaffolds de PVA com PEDOT:PSS apresentaram condutividade de 8,9 x 10-4 ± 6,6 x 10-4 S/cm, e os de PLA 2,7 x 10-6 ± 9,7 x 10-6 S/cm para com 10% de PEDOT:PSS, suficientes para incentivar a proliferação e diferenciação celular. Os scaffolds de PLA com 10% de PEDOT:PSS não apresentam citotoxicidade quando comparado ao cultivo 2D convencional em placas, enquanto os demais scaffolds testados apresentaram menor viabilidade celular. Assim, o scaffold de PLA 10% é o mais indicado para aplicações em engenharia de tecido. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-08-04T14:17:07Z |
dc.date.available.fl_str_mv |
2023-08-04T14:17:07Z |
dc.date.issued.fl_str_mv |
2023-04-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/12638 |
url |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/12638 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade do Vale do Rio dos Sinos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
Unisinos |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola Politécnica |
publisher.none.fl_str_mv |
Universidade do Vale do Rio dos Sinos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) instname:Universidade do Vale do Rio dos Sinos (UNISINOS) instacron:UNISINOS |
instname_str |
Universidade do Vale do Rio dos Sinos (UNISINOS) |
instacron_str |
UNISINOS |
institution |
UNISINOS |
reponame_str |
Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) |
collection |
Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) |
bitstream.url.fl_str_mv |
http://repositorio.jesuita.org.br/bitstream/UNISINOS/12638/2/license.txt http://repositorio.jesuita.org.br/bitstream/UNISINOS/12638/1/Tayn%C3%A1+Copes+Rodrigues_.pdf |
bitstream.checksum.fl_str_mv |
320e21f23402402ac4988605e1edd177 7149babb27778e4b030e55ed97804ba2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS) |
repository.mail.fl_str_mv |
|
_version_ |
1801845095527350272 |