Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle

Detalhes bibliográficos
Autor(a) principal: Silva,Fabyano Fonseca e
Data de Publicação: 2011
Outros Autores: Sáfadi,Thelma, Muniz,Joel Augusto, Rosa,Guilherme Jordão Magalhães, Aquino,Luiz Henrique de, Mourão,Gerson Barreto, Silva,Carlos Henrique Osório
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Scientia Agrícola (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000200015
Resumo: The animal breeding values forecasting at futures times is a relevant technological innovation in the field of Animal Science, since its enables a previous indication of animals that will be either kept by the producer for breeding purposes or discarded. This study discusses an MCMC Bayesian methodology applied to panel data in a time series context. We consider Bayesian analysis of an autoregressive, AR(p), panel data model of order p, using an exact likelihood function, comparative analysis of prior distributions and predictive distributions of future observations. The methodology was tested by a simulation study using three priors: hierarchical Multivariate Normal-Inverse Gamma (model 1), independent Multivariate Student's t Inverse Gamma (model 2) and Jeffrey's (model 3). Comparisons by Pseudo-Bayes Factor favored model 2. The proposed methodology was applied to longitudinal data relative to Expected Progeny Difference (EPD) of beef cattle sires. The forecast efficiency was around 80%. Regarding the mean width of the EPD interval estimation (95%) in a future time, a great advantage was observed for the proposed Bayesian methodology over usual asymptotic frequentist method.
id USP-18_033f2b49541875be3c6464da453c395a
oai_identifier_str oai:scielo:S0103-90162011000200015
network_acronym_str USP-18
network_name_str Scientia Agrícola (Online)
repository_id_str
spelling Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattleMCMCtime series forecastingprior comparisonpredictive distributionThe animal breeding values forecasting at futures times is a relevant technological innovation in the field of Animal Science, since its enables a previous indication of animals that will be either kept by the producer for breeding purposes or discarded. This study discusses an MCMC Bayesian methodology applied to panel data in a time series context. We consider Bayesian analysis of an autoregressive, AR(p), panel data model of order p, using an exact likelihood function, comparative analysis of prior distributions and predictive distributions of future observations. The methodology was tested by a simulation study using three priors: hierarchical Multivariate Normal-Inverse Gamma (model 1), independent Multivariate Student's t Inverse Gamma (model 2) and Jeffrey's (model 3). Comparisons by Pseudo-Bayes Factor favored model 2. The proposed methodology was applied to longitudinal data relative to Expected Progeny Difference (EPD) of beef cattle sires. The forecast efficiency was around 80%. Regarding the mean width of the EPD interval estimation (95%) in a future time, a great advantage was observed for the proposed Bayesian methodology over usual asymptotic frequentist method.Escola Superior de Agricultura "Luiz de Queiroz"2011-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000200015Scientia Agricola v.68 n.2 2011reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/S0103-90162011000200015info:eu-repo/semantics/openAccessSilva,Fabyano Fonseca eSáfadi,ThelmaMuniz,Joel AugustoRosa,Guilherme Jordão MagalhãesAquino,Luiz Henrique deMourão,Gerson BarretoSilva,Carlos Henrique Osórioeng2011-03-31T00:00:00Zoai:scielo:S0103-90162011000200015Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2011-03-31T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
title Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
spellingShingle Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
Silva,Fabyano Fonseca e
MCMC
time series forecasting
prior comparison
predictive distribution
title_short Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
title_full Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
title_fullStr Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
title_full_unstemmed Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
title_sort Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
author Silva,Fabyano Fonseca e
author_facet Silva,Fabyano Fonseca e
Sáfadi,Thelma
Muniz,Joel Augusto
Rosa,Guilherme Jordão Magalhães
Aquino,Luiz Henrique de
Mourão,Gerson Barreto
Silva,Carlos Henrique Osório
author_role author
author2 Sáfadi,Thelma
Muniz,Joel Augusto
Rosa,Guilherme Jordão Magalhães
Aquino,Luiz Henrique de
Mourão,Gerson Barreto
Silva,Carlos Henrique Osório
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva,Fabyano Fonseca e
Sáfadi,Thelma
Muniz,Joel Augusto
Rosa,Guilherme Jordão Magalhães
Aquino,Luiz Henrique de
Mourão,Gerson Barreto
Silva,Carlos Henrique Osório
dc.subject.por.fl_str_mv MCMC
time series forecasting
prior comparison
predictive distribution
topic MCMC
time series forecasting
prior comparison
predictive distribution
description The animal breeding values forecasting at futures times is a relevant technological innovation in the field of Animal Science, since its enables a previous indication of animals that will be either kept by the producer for breeding purposes or discarded. This study discusses an MCMC Bayesian methodology applied to panel data in a time series context. We consider Bayesian analysis of an autoregressive, AR(p), panel data model of order p, using an exact likelihood function, comparative analysis of prior distributions and predictive distributions of future observations. The methodology was tested by a simulation study using three priors: hierarchical Multivariate Normal-Inverse Gamma (model 1), independent Multivariate Student's t Inverse Gamma (model 2) and Jeffrey's (model 3). Comparisons by Pseudo-Bayes Factor favored model 2. The proposed methodology was applied to longitudinal data relative to Expected Progeny Difference (EPD) of beef cattle sires. The forecast efficiency was around 80%. Regarding the mean width of the EPD interval estimation (95%) in a future time, a great advantage was observed for the proposed Bayesian methodology over usual asymptotic frequentist method.
publishDate 2011
dc.date.none.fl_str_mv 2011-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000200015
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000200015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-90162011000200015
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
dc.source.none.fl_str_mv Scientia Agricola v.68 n.2 2011
reponame:Scientia Agrícola (Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Scientia Agrícola (Online)
collection Scientia Agrícola (Online)
repository.name.fl_str_mv Scientia Agrícola (Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv scientia@usp.br||alleoni@usp.br
_version_ 1748936462413332480