Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Scientia Agrícola (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000200015 |
Resumo: | The animal breeding values forecasting at futures times is a relevant technological innovation in the field of Animal Science, since its enables a previous indication of animals that will be either kept by the producer for breeding purposes or discarded. This study discusses an MCMC Bayesian methodology applied to panel data in a time series context. We consider Bayesian analysis of an autoregressive, AR(p), panel data model of order p, using an exact likelihood function, comparative analysis of prior distributions and predictive distributions of future observations. The methodology was tested by a simulation study using three priors: hierarchical Multivariate Normal-Inverse Gamma (model 1), independent Multivariate Student's t Inverse Gamma (model 2) and Jeffrey's (model 3). Comparisons by Pseudo-Bayes Factor favored model 2. The proposed methodology was applied to longitudinal data relative to Expected Progeny Difference (EPD) of beef cattle sires. The forecast efficiency was around 80%. Regarding the mean width of the EPD interval estimation (95%) in a future time, a great advantage was observed for the proposed Bayesian methodology over usual asymptotic frequentist method. |
id |
USP-18_033f2b49541875be3c6464da453c395a |
---|---|
oai_identifier_str |
oai:scielo:S0103-90162011000200015 |
network_acronym_str |
USP-18 |
network_name_str |
Scientia Agrícola (Online) |
repository_id_str |
|
spelling |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattleMCMCtime series forecastingprior comparisonpredictive distributionThe animal breeding values forecasting at futures times is a relevant technological innovation in the field of Animal Science, since its enables a previous indication of animals that will be either kept by the producer for breeding purposes or discarded. This study discusses an MCMC Bayesian methodology applied to panel data in a time series context. We consider Bayesian analysis of an autoregressive, AR(p), panel data model of order p, using an exact likelihood function, comparative analysis of prior distributions and predictive distributions of future observations. The methodology was tested by a simulation study using three priors: hierarchical Multivariate Normal-Inverse Gamma (model 1), independent Multivariate Student's t Inverse Gamma (model 2) and Jeffrey's (model 3). Comparisons by Pseudo-Bayes Factor favored model 2. The proposed methodology was applied to longitudinal data relative to Expected Progeny Difference (EPD) of beef cattle sires. The forecast efficiency was around 80%. Regarding the mean width of the EPD interval estimation (95%) in a future time, a great advantage was observed for the proposed Bayesian methodology over usual asymptotic frequentist method.Escola Superior de Agricultura "Luiz de Queiroz"2011-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000200015Scientia Agricola v.68 n.2 2011reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/S0103-90162011000200015info:eu-repo/semantics/openAccessSilva,Fabyano Fonseca eSáfadi,ThelmaMuniz,Joel AugustoRosa,Guilherme Jordão MagalhãesAquino,Luiz Henrique deMourão,Gerson BarretoSilva,Carlos Henrique Osórioeng2011-03-31T00:00:00Zoai:scielo:S0103-90162011000200015Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2011-03-31T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle |
title |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle |
spellingShingle |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle Silva,Fabyano Fonseca e MCMC time series forecasting prior comparison predictive distribution |
title_short |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle |
title_full |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle |
title_fullStr |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle |
title_full_unstemmed |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle |
title_sort |
Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle |
author |
Silva,Fabyano Fonseca e |
author_facet |
Silva,Fabyano Fonseca e Sáfadi,Thelma Muniz,Joel Augusto Rosa,Guilherme Jordão Magalhães Aquino,Luiz Henrique de Mourão,Gerson Barreto Silva,Carlos Henrique Osório |
author_role |
author |
author2 |
Sáfadi,Thelma Muniz,Joel Augusto Rosa,Guilherme Jordão Magalhães Aquino,Luiz Henrique de Mourão,Gerson Barreto Silva,Carlos Henrique Osório |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Silva,Fabyano Fonseca e Sáfadi,Thelma Muniz,Joel Augusto Rosa,Guilherme Jordão Magalhães Aquino,Luiz Henrique de Mourão,Gerson Barreto Silva,Carlos Henrique Osório |
dc.subject.por.fl_str_mv |
MCMC time series forecasting prior comparison predictive distribution |
topic |
MCMC time series forecasting prior comparison predictive distribution |
description |
The animal breeding values forecasting at futures times is a relevant technological innovation in the field of Animal Science, since its enables a previous indication of animals that will be either kept by the producer for breeding purposes or discarded. This study discusses an MCMC Bayesian methodology applied to panel data in a time series context. We consider Bayesian analysis of an autoregressive, AR(p), panel data model of order p, using an exact likelihood function, comparative analysis of prior distributions and predictive distributions of future observations. The methodology was tested by a simulation study using three priors: hierarchical Multivariate Normal-Inverse Gamma (model 1), independent Multivariate Student's t Inverse Gamma (model 2) and Jeffrey's (model 3). Comparisons by Pseudo-Bayes Factor favored model 2. The proposed methodology was applied to longitudinal data relative to Expected Progeny Difference (EPD) of beef cattle sires. The forecast efficiency was around 80%. Regarding the mean width of the EPD interval estimation (95%) in a future time, a great advantage was observed for the proposed Bayesian methodology over usual asymptotic frequentist method. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000200015 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162011000200015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-90162011000200015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
dc.source.none.fl_str_mv |
Scientia Agricola v.68 n.2 2011 reponame:Scientia Agrícola (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Scientia Agrícola (Online) |
collection |
Scientia Agrícola (Online) |
repository.name.fl_str_mv |
Scientia Agrícola (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
scientia@usp.br||alleoni@usp.br |
_version_ |
1748936462413332480 |