Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.4238/gmr.15027299 http://www.locus.ufv.br/handle/123456789/18922 |
Resumo: | We propose and evaluate a novel approach for forecasting gene expression over non-observed times in longitudinal trials under a Bayesian viewpoint. One of the aims is to cluster genes that share similar expression patterns over time and then use this similarity to predict relative expression at time points of interest. Expression values of 106 genes expressed during the cell cycle of Saccharomyces cerevisiae were used and genes were partitioned into five distinct clusters of sizes 33, 32, 21, 16, and 4. After removing the last observed time point, the agreements of signals (upregulated or downregulated) considering the predicted expression level were 72.7, 81.3, 76.2, 68.8, and 50.0%, respectively, for each cluster. The percentage of credibility intervals that contained the true values of gene expression for a future time was ~90%. The methodology performed well, providing a valid forecast of gene expression values by fitting an autoregressive panel data model. This approach is easily implemented with other time-series models and when Poisson and negative binomial probability distributions are assumed for the gene expression data. |
id |
UFV_72b5e300b12a8fca3e6ef8594a9deb64 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/18922 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approachTime seriesTemporal gene expressionPosterior predictive distributionsWe propose and evaluate a novel approach for forecasting gene expression over non-observed times in longitudinal trials under a Bayesian viewpoint. One of the aims is to cluster genes that share similar expression patterns over time and then use this similarity to predict relative expression at time points of interest. Expression values of 106 genes expressed during the cell cycle of Saccharomyces cerevisiae were used and genes were partitioned into five distinct clusters of sizes 33, 32, 21, 16, and 4. After removing the last observed time point, the agreements of signals (upregulated or downregulated) considering the predicted expression level were 72.7, 81.3, 76.2, 68.8, and 50.0%, respectively, for each cluster. The percentage of credibility intervals that contained the true values of gene expression for a future time was ~90%. The methodology performed well, providing a valid forecast of gene expression values by fitting an autoregressive panel data model. This approach is easily implemented with other time-series models and when Poisson and negative binomial probability distributions are assumed for the gene expression data.Genetics and Molecular Research2018-04-20T10:50:39Z2018-04-20T10:50:39Z2016-06-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf16765680http://dx.doi.org/10.4238/gmr.15027299http://www.locus.ufv.br/handle/123456789/18922engv. 15, n. 2, p. 01-09, jun 2016Nascimento, M.Silva, F.F. eSáfadi, T.Nascimento, A.C.C.Barroso, L.M.A.Glória, L.S.Carvalho, B. de S.info:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T08:00:28Zoai:locus.ufv.br:123456789/18922Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T08:00:28LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach |
title |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach |
spellingShingle |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach Nascimento, M. Time series Temporal gene expression Posterior predictive distributions |
title_short |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach |
title_full |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach |
title_fullStr |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach |
title_full_unstemmed |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach |
title_sort |
Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach |
author |
Nascimento, M. |
author_facet |
Nascimento, M. Silva, F.F. e Sáfadi, T. Nascimento, A.C.C. Barroso, L.M.A. Glória, L.S. Carvalho, B. de S. |
author_role |
author |
author2 |
Silva, F.F. e Sáfadi, T. Nascimento, A.C.C. Barroso, L.M.A. Glória, L.S. Carvalho, B. de S. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Nascimento, M. Silva, F.F. e Sáfadi, T. Nascimento, A.C.C. Barroso, L.M.A. Glória, L.S. Carvalho, B. de S. |
dc.subject.por.fl_str_mv |
Time series Temporal gene expression Posterior predictive distributions |
topic |
Time series Temporal gene expression Posterior predictive distributions |
description |
We propose and evaluate a novel approach for forecasting gene expression over non-observed times in longitudinal trials under a Bayesian viewpoint. One of the aims is to cluster genes that share similar expression patterns over time and then use this similarity to predict relative expression at time points of interest. Expression values of 106 genes expressed during the cell cycle of Saccharomyces cerevisiae were used and genes were partitioned into five distinct clusters of sizes 33, 32, 21, 16, and 4. After removing the last observed time point, the agreements of signals (upregulated or downregulated) considering the predicted expression level were 72.7, 81.3, 76.2, 68.8, and 50.0%, respectively, for each cluster. The percentage of credibility intervals that contained the true values of gene expression for a future time was ~90%. The methodology performed well, providing a valid forecast of gene expression values by fitting an autoregressive panel data model. This approach is easily implemented with other time-series models and when Poisson and negative binomial probability distributions are assumed for the gene expression data. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-21 2018-04-20T10:50:39Z 2018-04-20T10:50:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
16765680 http://dx.doi.org/10.4238/gmr.15027299 http://www.locus.ufv.br/handle/123456789/18922 |
identifier_str_mv |
16765680 |
url |
http://dx.doi.org/10.4238/gmr.15027299 http://www.locus.ufv.br/handle/123456789/18922 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
v. 15, n. 2, p. 01-09, jun 2016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
pdf application/pdf |
dc.publisher.none.fl_str_mv |
Genetics and Molecular Research |
publisher.none.fl_str_mv |
Genetics and Molecular Research |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1817559979296555008 |