Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach

Detalhes bibliográficos
Autor(a) principal: Nascimento, M.
Data de Publicação: 2016
Outros Autores: Silva, F.F. e, Sáfadi, T., Nascimento, A.C.C., Barroso, L.M.A., Glória, L.S., Carvalho, B. de S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.4238/gmr.15027299
http://www.locus.ufv.br/handle/123456789/18922
Resumo: We propose and evaluate a novel approach for forecasting gene expression over non-observed times in longitudinal trials under a Bayesian viewpoint. One of the aims is to cluster genes that share similar expression patterns over time and then use this similarity to predict relative expression at time points of interest. Expression values of 106 genes expressed during the cell cycle of Saccharomyces cerevisiae were used and genes were partitioned into five distinct clusters of sizes 33, 32, 21, 16, and 4. After removing the last observed time point, the agreements of signals (upregulated or downregulated) considering the predicted expression level were 72.7, 81.3, 76.2, 68.8, and 50.0%, respectively, for each cluster. The percentage of credibility intervals that contained the true values of gene expression for a future time was ~90%. The methodology performed well, providing a valid forecast of gene expression values by fitting an autoregressive panel data model. This approach is easily implemented with other time-series models and when Poisson and negative binomial probability distributions are assumed for the gene expression data.
id UFV_72b5e300b12a8fca3e6ef8594a9deb64
oai_identifier_str oai:locus.ufv.br:123456789/18922
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Bayesian forecasting of temporal gene expression by using an autoregressive panel data approachTime seriesTemporal gene expressionPosterior predictive distributionsWe propose and evaluate a novel approach for forecasting gene expression over non-observed times in longitudinal trials under a Bayesian viewpoint. One of the aims is to cluster genes that share similar expression patterns over time and then use this similarity to predict relative expression at time points of interest. Expression values of 106 genes expressed during the cell cycle of Saccharomyces cerevisiae were used and genes were partitioned into five distinct clusters of sizes 33, 32, 21, 16, and 4. After removing the last observed time point, the agreements of signals (upregulated or downregulated) considering the predicted expression level were 72.7, 81.3, 76.2, 68.8, and 50.0%, respectively, for each cluster. The percentage of credibility intervals that contained the true values of gene expression for a future time was ~90%. The methodology performed well, providing a valid forecast of gene expression values by fitting an autoregressive panel data model. This approach is easily implemented with other time-series models and when Poisson and negative binomial probability distributions are assumed for the gene expression data.Genetics and Molecular Research2018-04-20T10:50:39Z2018-04-20T10:50:39Z2016-06-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf16765680http://dx.doi.org/10.4238/gmr.15027299http://www.locus.ufv.br/handle/123456789/18922engv. 15, n. 2, p. 01-09, jun 2016Nascimento, M.Silva, F.F. eSáfadi, T.Nascimento, A.C.C.Barroso, L.M.A.Glória, L.S.Carvalho, B. de S.info:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T08:00:28Zoai:locus.ufv.br:123456789/18922Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T08:00:28LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
title Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
spellingShingle Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
Nascimento, M.
Time series
Temporal gene expression
Posterior predictive distributions
title_short Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
title_full Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
title_fullStr Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
title_full_unstemmed Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
title_sort Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
author Nascimento, M.
author_facet Nascimento, M.
Silva, F.F. e
Sáfadi, T.
Nascimento, A.C.C.
Barroso, L.M.A.
Glória, L.S.
Carvalho, B. de S.
author_role author
author2 Silva, F.F. e
Sáfadi, T.
Nascimento, A.C.C.
Barroso, L.M.A.
Glória, L.S.
Carvalho, B. de S.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Nascimento, M.
Silva, F.F. e
Sáfadi, T.
Nascimento, A.C.C.
Barroso, L.M.A.
Glória, L.S.
Carvalho, B. de S.
dc.subject.por.fl_str_mv Time series
Temporal gene expression
Posterior predictive distributions
topic Time series
Temporal gene expression
Posterior predictive distributions
description We propose and evaluate a novel approach for forecasting gene expression over non-observed times in longitudinal trials under a Bayesian viewpoint. One of the aims is to cluster genes that share similar expression patterns over time and then use this similarity to predict relative expression at time points of interest. Expression values of 106 genes expressed during the cell cycle of Saccharomyces cerevisiae were used and genes were partitioned into five distinct clusters of sizes 33, 32, 21, 16, and 4. After removing the last observed time point, the agreements of signals (upregulated or downregulated) considering the predicted expression level were 72.7, 81.3, 76.2, 68.8, and 50.0%, respectively, for each cluster. The percentage of credibility intervals that contained the true values of gene expression for a future time was ~90%. The methodology performed well, providing a valid forecast of gene expression values by fitting an autoregressive panel data model. This approach is easily implemented with other time-series models and when Poisson and negative binomial probability distributions are assumed for the gene expression data.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-21
2018-04-20T10:50:39Z
2018-04-20T10:50:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 16765680
http://dx.doi.org/10.4238/gmr.15027299
http://www.locus.ufv.br/handle/123456789/18922
identifier_str_mv 16765680
url http://dx.doi.org/10.4238/gmr.15027299
http://www.locus.ufv.br/handle/123456789/18922
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv v. 15, n. 2, p. 01-09, jun 2016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv pdf
application/pdf
dc.publisher.none.fl_str_mv Genetics and Molecular Research
publisher.none.fl_str_mv Genetics and Molecular Research
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1817559979296555008